This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number =
h = Planck's constant =
c = speed of light =
Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Answer:
NaCl will only conduct electricity in solutions
Explanation:
For electrical conduction, free mobile electrons as seen in most metals must be present or ions which are charged particles must be available for solutions and molten substances.
- Sodium chloride is an ionic compound without free mobile electrons or ions despite being ionic.
- It will maintain a subtle and unique charge stability when in solid form.
- In solid, the ions are not free to move and remain locked up in the solid mass.
- When introduced into a solution, the ions becomes free to move and this will aid electrical conduction.
Answer:
C
Explanation:
As the temperature increases, the kinetic energy of the molecules increases.
Answer:
Magnesium chloride and water
Explanation:
Mg(OH)₂ + 2HCl ⟶ MgCl₂ + 2H₂O
magnesium chloride water