1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
3 years ago
13

Which kinds of objects emit light?

Physics
2 answers:
Luda [366]3 years ago
5 0
A: objects that shine
Visible: Our eyes detect visible light<span>. Fireflies, </span>light<span> bulbs, and stars all </span>emit<span> visible </span>light<span>. Ultraviolet: Ultraviolet radiation is </span>emitted<span> by the Sun and are the reason skin tans and burns. "Hot" </span>objects<span> in space </span>emit<span> UV radiation as well.</span>
Otrada [13]3 years ago
4 0
<h2>Answer:</h2>

<u>A) objects that shine  </u>

<u>B) hot objects  </u>

<h2>Explanation:</h2>

Actually our eyes see objects when light reflects from those objects and reach our eyes. Emission of light is only possible from source of light. The other one is reflection. So in the given options shiny objects and hot objects can become the source of light that is why we can say that shiny and hot objects emit light.

You might be interested in
A man does 4,780 J of work in the process of pushing his 2.70 103 kg truck from rest to a speed of v, over a distance of 25.5 m.
wolverine [178]

Answer:

(A) Velocity will be 1.88 m/sec

(b) Force will be 187.45 N

Explanation:

We have given work done = 4780 j

Distance d = 25.5 m

(A) Mass of the truck m = m=2.70\times 10^3kg

We know that kinetic energy is given  by

KE=\frac{1}{2}mv^2

So v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2\times 4780}{2.7\times 10^3}}=1.88m/sec

(B) We know that work done is given by

W = Fd

So F=\frac{W}{d}=\frac{4780}{25.5}=187.45N

4 0
3 years ago
A projectile is shot at an angle 45 degrees to the horizontalnear the surface of the earth but in the absence of air resistance.
ivann1987 [24]

Answer:

v₂ = 176.24 m/s

Explanation:

given,

angle of projectile = 45°

speed = v₁ = 150 m/s

for second trail

speed = v₂ = ?

angle of projectile = 37°

maximum height attained formula,

H_{max}= \dfrac{v^2 sin^2(\theta)}{g}

now,

H_{max}= \dfrac{v_1^2 sin^2(\theta_1)}{g}

H_{max}= \dfrac{v_2^2 sin^2(\theta_2)}{g}

now, equating both the equations

\dfrac{v_2^2}{v_1^2}=\dfrac{sin^2(\theta_1)}{sin^2(\theta_2)}

\dfrac{v_2^2}{150^2}=\dfrac{sin^2(45^0)}{sin^2(37^0)}

   v₂² = 31061.79

   v₂ = 176.24 m/s

velocity of projectile would be equal to v₂ = 176.24 m/s

8 0
3 years ago
Question 1<br> 2.5 cm=<br> mm
Nookie1986 [14]
There’s 10mm in a cm: 22mm
8 0
3 years ago
Read 2 more answers
How does the input distance of a single fixed pulley compare to the out- put distance?
ololo11 [35]

A pulley is another sort of basic machine in the lever family. We may have utilized a pulley to lift things, for example, a banner on a flagpole.

<u>Explanation:</u>

The point in a fixed pulley resembles the support of a lever. The remainder of the pulley behaves like the fixed arm of a first-class lever, since it rotates around a point. The distance from the fulcrum is the equivalent on the two sides of a fixed pulley. A fixed pulley has a mechanical advantage of one. Hence, a fixed pulley doesn't increase the force.

It essentially alters the direction of the force. A moveable pulley or a mix of pulleys can deliver a mechanical advantage of more than one. Moveable pulleys are appended to the item being moved. Fixed and moveable pulleys can be consolidated into a solitary unit to create a greater mechanical advantage.

4 0
3 years ago
1) draw a simple circuit with a voltage source and four resistors wired in series
Norma-Jean [14]

Answer:

1)

In this circuit (see attachment #1), we have:

- A voltage source: in this case, we choose a battery. A voltage source is a device producing an electromotive force (in a battery, this is done by means of a chemical reaction), which is responsible for "pushing" the electrons along the circuit and creating a current. The electromotive force (emf) of the battery is also called voltage, and it is indicated with the letter V.

- Four resistors: a resistor is a device which opposes to the flow of current. The property that describes by "how much" the resistor "opposes" to the flow of current is called "resistance", and it is indicated with the letter R.

- In this circuit, the 4 resistors are in series. Resistors are said to be in series when they are connected along the same branch of the circuit, so that the same current flow across each of them.

- For resistors in series, the equivalent resistance of the circuit is given by the sum of the individual resistances:

R=R_1+R_2+...+R_n

2)

In this circuit (see attachment #2), we have:

- A voltage source: as before, we have chosen a battery, providing an electromotive  force to the circuit

- Three resistors wired in parallel. Resistors are said to be connected in parallel when they are connected along different branches, but with their terminals connected to the same point, so that each of them has the same potential difference across it.

- For resistors in parallel, the equivalent resistance of the circuit is calculated using the formula:

\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+...+\frac{1}{R_n}

3)

In this circuit (see attachment #3), we have:

- A voltage source (again, we have choosen a battery)

- Three resistors, of which:

-- 2 of them are connected in parallel with each other

-- the 3rd one it is in series with the first two

If we call R_1,R_2 the resistances of the first 2 resistors in parallel, their equivalent resistance is:

\frac{1}{R_{12}}=\frac{1}{R_1}+\frac{1}{R_2}\\\rightarrow R_{12}=\frac{R_1 R_2}{R_1+R_2}

Then, these two resistors are connected in series with resistor R_3; and so, the total resistance of this circuit will be:

R=R_{12}+R_3=\frac{R_1R_2}{R_1+R_2}+R_3=\frac{R_1R_2+R_3(R_1+R_2)}{R_1+R_2}

4)

In this circuit (see attachment #4), we have:

- A voltage source (again, a battery)

- We have 6 resistors, which are arranged as follows:

-- Two branches each containing 3 resistors

-- The two branches are in parallel with each other

So, the total resistance of the two branches are:

R_{123}=R_1+R_2+R_3

R_{456}=R_4+R_5+R_6

And since the two branches are in parallel, their total resistance will be:

\frac{1}{R}=\frac{1}{R_{123}}+\frac{1}{R_{456}}\\\rightarrow R=\frac{R_{123}R_{456}}{R_{123}+R_{456}}=\frac{(R_1+R_2+R_3)(R_4+R_5+R_6)}{R_1+R_2+R_3+R_4+R_5+R_6}

4 0
3 years ago
Other questions:
  • According to the Big Bang theory, the universe was once very __________ and is now __________.
    13·2 answers
  • Which of the following best describe a generator ?
    9·2 answers
  • If you were to separate all of the electrons and protons in 1.00 g (0.001 kg) of matter, you’d have about 96,000 C of positive c
    13·1 answer
  • Urbanization is the cause of "urban heat island" a condition that could be described as global warming caused by pollutants of a
    15·1 answer
  • Moustapha jones drives east at 100km/hr for 3 hours then back west at 80km/hr for 1.5 hours. which pair of answers gives his ave
    8·1 answer
  • Which needs less heat to increase its temperature,
    6·2 answers
  • 1. A 100-kg crate is pulled across a warehouse floor using a rope with a force of 250 N at an angle of 45o from the horizontal.
    12·1 answer
  • Why is a neutral object attracted to a charged object?
    5·1 answer
  • What is potential energy
    13·1 answer
  • An object moves with a positive acceleration. Could the object be moving with increasing speed, decreasing speed or constant spe
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!