Answer:
Magnetic flux through the loop is 1.03 T m²
Explanation:
Given:
Magnetic field, B = 4.35 T
Radius of the circular loop, r = 0.280 m
Angle between circular loop and magnetic field, θ = 15.1⁰
Magnetic flux is determine by the relation:
....(1)
Here A represents area of the circular loop.
Area of circular loop, A = πr²
Hence, the equation (1) becomes:

Substitute the suitable values in the above equation.

= 1.03 T m²
Answer:
(a) Elongation of the rod==5.61×10⁻⁹m
(b) Change in diameter=1.640×10⁻⁸m
Explanation:
Given data
Diameter d=78 in=1.9812 m
Cross Area is:

Applied Load P=17 KN=17×10³N
E=29 × 106 psi=1.99947961×10¹¹Pa
Stress and Strain in x direction
Stress in x direction
σ=P/A

σ=5517.25 Pa
Strain in x direction
ε=σ/E

ε=2.76×10⁻⁸
Part (a)
Elongation of the rod=Lε
=(0.2032)(2.76×10⁻⁸)
Elongation of the rod==5.61×10⁻⁹m
Part(b) Change in diameter
Strain in y direction
ε₁= -vε
ε₁= -(0.30)(2.76×10⁻⁸)
ε₁=-8.28×10⁻⁹
Change in diameter=d×ε₁
Change in diameter=(1.9812m)×(-8.28×10⁻⁹)
Change in diameter=1.640×10⁻⁸m
"Frequency" just means "often-ness" ... how often something happens.
It's always expressed as
<em>(number of happenings) / (some period of time) .</em>
The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
Answer:
I will but can you just wait for some minutes cus I am in a hurry now.
sorry that pic is a little blurry