1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
12

Which formula contains two non- metals?BaONaBrKISi O2​

Chemistry
1 answer:
Yakvenalex [24]3 years ago
6 0
SiO2 is the only possible choice because the other formulas contain metals. how do we know this? because the other formulas contain elements located on the left of the “staircase” on the periodic table that separates metals from non-metals.
You might be interested in
Under which of the folowing conditions of temperature and pressure wil H2 gas be expected to behave most like an ideal gas ?
Brilliant_brown [7]

Answer:

C ( 500K and 0.1atm)

Explanation:

4 0
2 years ago
What does an algae cell, tree,mushroom, and animal have in common
wel
Each one is a living organism.
5 0
3 years ago
A disk of radius 2.0 cm has a surface charge density of 6.3 μC/m2 on its upper face. What is the magnitude of the electric field
maksim [4K]

Answer:

the electric field at Z = 12 cm is E =   9.68 × 10³ N/C = 9.68 kN/C

Explanation:

Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.

The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀(1 - \frac{z}{\sqrt{z^{2} + R^{2} }  })

Substituting the values into the equation, it becomes

E = σ/ε₀(1 - \frac{z}{\sqrt{z^{2} + R^{2} }  }) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²(1 - \frac{0.12}{\sqrt{0.12^{2} + 0.02^{2} } }) = 7.12 × 10⁵(1 - \frac{0.12}{0.1216}) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C

Therefore, the electric field at Z = 12 cm is E =   9.68 × 10³ N/C = 9.68 kN/C

7 0
3 years ago
State general trend for metal properties as you go left to right across a period
qwelly [4]

Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element, including its size and its electronic properties. Major periodic trends include: electronegativity, ionization energy, electron affinity, atomic radius, melting point, and metallic character. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structure of the elements within their respective group families or periods, and because of the periodic nature of the elements.

Electronegativity Trends

Electronegativity can be understood as a chemical property describing an atom's ability to attract and bind with electrons. Because electronegativity is a qualitative property, there is no standardized method for calculating electronegativity. However, the most common scale for quantifying electronegativity is the Pauling scale (Table A2), named after the chemist Linus Pauling. The numbers assigned by the Pauling scale are dimensionless due to the qualitative nature of electronegativity. Electronegativity values for each element can be found on certain periodic tables. An example is provided below.


From left to right across a period of elements, electronegativity increases. If the valence shell of an atom is less than half full, it requires less energy to lose an electron than to gain one. Conversely, if the valence shell is more than half full, it is easier to pull an electron into the valence shell than to donate one.

From top to bottom down a group, electronegativity decreases. This is because atomic number increases down a group, and thus there is an increased distance between the valence electrons and nucleus, or a greater atomic radius.

Important exceptions of the above rules include the noble gases, lanthanides, and actinides. The noble gases possess a complete valence shell and do not usually attract electrons. The lanthanides and actinides possess more complicated chemistry that does not generally follow any trends. Therefore, noble gases, lanthanides, and actinides do not have electronegativity values.

As for the transition metals, although they have electronegativity values, there is little variance among them across the period and up and down a group. This is because their metallic properties affect their ability to attract electrons as easily as the other elements.

According to these two general trends, the most electronegative element is fluorine, with 3.98 Pauling units.



6 0
3 years ago
What is indirect evidence in science
hodyreva [135]

Definition of indirect evidence. : evidence that establishes immediately collateral facts from which the main fact may be inferred : circumstantial evidence.

8 0
2 years ago
Other questions:
  • consideras util conocer las propiedades extensivas e intensivas de los insumos utilizados para la elaboración de producto ¿por q
    14·1 answer
  • Why is it reasonable to assume the specific heats of naoh and hcl solutions are the same as water?
    5·1 answer
  • The average density of a carbon-fiber-epoxy composite is 1.615 g/cm3. the density of the epoxy resin is 1.21 g/cm3 and that of t
    12·1 answer
  • 0.76 g of lead(2) nitrate was dissolvedin 50.00ml of water a d treated with 25.00 ml of 0.2010M sodium sulfate inoder to determi
    5·1 answer
  • How does the Coriolis effect benefit people who travel by airplane?
    5·1 answer
  • Help plz :)) <3 i’m confused
    8·1 answer
  • Ammonium perchlorate nh4clo4 is a powerful solid rocket fuel, used in the space shuttle boosters. it decomposes into nitrogen n2
    15·1 answer
  • PLEASE HELP ME PLEASE!!!!!!!!
    6·1 answer
  • PLS!! I really need help since I don´t understand this
    10·2 answers
  • What is leukemia?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!