Answer : The correct answer for change in freezing point = 1.69 ° C
Freezing point depression :
It is defined as depression in freezing point of solvent when volatile or non volatile solute is added .
SO when any solute is added freezing point of solution is less than freezing point of pure solvent . This depression in freezing point is directly proportional to molal concentration of solute .
It can be expressed as :
ΔTf = Freezing point of pure solvent - freezing point of solution = i* kf * m
Where : ΔTf = change in freezing point (°C)
i = Von't Hoff factor
kf =molal freezing point depression constant of solvent.
m = molality of solute (m or
)
Given : kf = 1.86 
m = 0.907
)
Von't Hoff factor for non volatile solute is always = 1 .Since the sugar is non volatile solute , so i = 1
Plugging value in expression :
ΔTf = 1* 1.86
* 0.907
)
ΔTf = 1.69 ° C
Hence change in freezing point = 1.69 °C
<span>Throughout the development of particle physics, scientists have created different models to understand the atom. When we are talking about the diameter of an atom, we would refer to the Bohr radius, which is the radius from the nucleus to the orbiting electron.
In this case, a hydrogen atom has one electron, and the Bohr radius in the ground state is 5.29 x 10^{-11} meters. To find the diameter, we just multiply the Bohr radius by 2.
diameter = 2 x 5.29 x 10^{-11} meters
diameter = 10.58 x 10^{-11} meters
diameter = 1.058 x 10^{-10} meters
The diameter of a hydrogen atom in ground state is:
1.058 x 10^{-10} meters</span>
Answer: The ocean plays a key role in this vital cycle of water. The ocean holds 97% of the total water on the planet; 78% of global precipitation occurs over the ocean, and it is the source of 86% of global evaporation. ... Water evaporates from the surface of the ocean, mostly in warm, cloud-free subtropical seas.
Explanation:
Hope this helps!
Answer:
Telophase
Explanation:
I looked up the ending lol!hope this helps