Answer: 190 g of magnesium chloride can be produced by reacting 2 moles of chlorine gas with excess magnesium bromide.
Explanation:
The balanced chemical reaction is;
is the limiting reagent as it limits the formation of product and
is the excess reagent.
According to stoichiometry :
1 mole of
produces = 1 mole of
Thus 2 moles of
will produce=
of
Mass of
Thus 190 g of magnesium chloride can be produced by reacting 2 moles of chlorine gas with excess magnesium bromide
Answer:
Increasing substrate concentration also increases the rate of reaction to a certain point. Once all of the enzymes have bound, any substrate increase will have no effect on the rate of reaction, as the available enzymes will be saturated and working at their maximum rate.
Answer:
26.74g
Explanation:
The equation of the reaction is;
SIO₂ + 3C --> SiC +2CO
From the balanced equation, the relationship between SiC and C is;
3 mol of C produces 1 mol of SiC
Converting mol to mass using; Mass = moles * Molar mass
Mass of SiC = 1 mol * 40.11 g/mol = 40.11g
This means;
3 mol of C produces 40.11g of SiC
2 mol of C produces xg of SiC
3 = 40.11
2 = x
x = 2 * 40.11 / 3 = 26.74g
Answer:
Row 1
![[H^+]=1.8\times 10^{-6}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.8%5Ctimes%2010%5E%7B-6%7DM)
![pH=-\log[H^+]=-\log[1.8\times 10^{-6}]=5.7](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B1.8%5Ctimes%2010%5E%7B-6%7D%5D%3D5.7)
pOh=14-pH=14-5.7=8.3
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=0.5\times 10^{-8}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.5%5Ctimes%2010%5E%7B-8%7DM)
Hence, acidic
Row 2
![[OH^-]=3.6\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.6%5Ctimes%2010%5E%7B-10%7DM)
![pOH=-\log[OH^-]=-\log[3.6\times 10^{-10}]=9.4](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B3.6%5Ctimes%2010%5E%7B-10%7D%5D%3D9.4)
pH=14-pOH=14 - 9.4 = 4.6
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=2.6\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D2.6%5Ctimes%2010%5E%7B-5%7DM)
Hence, acidic
Row 3
pH = 8.15
![[H^+]=0.7\times 10^{-8}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.7%5Ctimes%2010%5E%7B-8%7DM)
pOH=14-pH=14 - 8.15 = 5.8
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=1.5\times 10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5%5Ctimes%2010%5E%7B-6%7DM)
Hence, basic
Row 4
pOH = 5.70
![[OH^-]=1.8\times 10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.8%5Ctimes%2010%5E%7B-6%7DM)
pH=14-pOH=14 - 5.70 = 8.3
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.5\times 10^{-8}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.5%5Ctimes%2010%5E%7B-8%7DM)
Hence, basic
Answer: The given statement is true.
Explanation:
It is known that due to increase in temperature ice melts. Therefore, during ice age there is also melting of ice and solid state of water changes into liquid state of water.
Therefore, this water moves from its initial place and changes its position result in the change of land and specific areas.
Thus, we can conclude that the statement during an ice age, land can move and specific areas can be permanently changed is true.