Answer:
when they have the same slope
The sound gets louder as it gets closer and when it passes is gets softer
Answer:
A. Two tennis balls that are near each other
Explanation:
The formula for gravitational force (F) between two objects is

where m₁ and m₂ are the masses of the two objects, d is the distance between their centres, and G is the gravitational constant.
Thus, two objects that are far from each other will have a smaller gravitational force. We can eliminate Options C and D.
If the objects are at the same distance, those with the smaller mass will have a smaller force.
The mass of a tennis ball is 57 g.
The mass of a soccer ball is 430 g.
Two tennis balls that are near each other will have a smaller gravitational attraction.
Gravity obeys the inverse square law. At 6400 km above the center of the Earth (Earth's surface) you weigh x. Twice that reduces your weight to 1/4th. Four times that height reduces your weight to 1/16th. 4 times 6400 km is 25,600 km. But that is above the center of the earth, and the question requests the height above the surface, so we deduct 6400 km to arrive at our final answer: 19,200 km.
Incidentally, it doesn't exactly work the opposite way. At the center of the Earth the mass would be equally distributed around you, and you would therefore be weightless.
Answer:
Option A
Explanation:
This can be explained based on the conservation of energy.
The total mechanical energy of the system remain constant in the absence of any external force. Also, the total mechanical energy of the system is the sum of the potential energy and the kinetic energy associated with the system.
In case of two stones thrown from a cliff one vertically downwards the other vertically upwards, the overall gravitational potential energy remain same for the two stones as the displacement of the stones is same.
Therefore the kinetic energy and hence the speed of the two stones should also be same in order for the mechanical energy to remain conserved.