<span>If there isn't any force then the normal contact force will be
N=m*g=7.5*9.81=73.58N
which is 73.58-23=50.58N less
so, there the person must pull at 23 degree upward
break down the tension in two components, vertical and horizontal.
vertical tension= 50.58=T*sin23
T=50.58/sin23=129.45N</span>
car starts from rest

final speed attained by the car is

acceleration of the car will be

now the time to reach this final speed will be



so it required 1.39 s to reach this final speed
Answer:
I think D am not pretty show
The refraction of light makes a swimming pool seem <u>shallower</u>.
The swimming pool seems shallower because the rays of light coming from the bottom of the pool do not come with a straight path. The path of light is straight as long as it is in the water.
When lights come out of the water into the air it bents downwards. This bending is called refraction.
Refraction forms a virtual image of the pool and it seems shallower than it actually is to the observer. This only happens when light travels from one transparent medium into another having lower density.
If you need to learn more about why a swimming pool appears <u>shallower</u>, click here
https://brainly.in/question/7136803?referrer=searchResults
#SPJ4
Answer:
λ = 102.78 nm
This radiation is in the UV range,
Explanation:
Bohr's atomic model for the hydrogen atom states that the energy is
E = - 13.606 / n²
where 13.606 eV is the ground state energy and n is an integer
an atom transition is the jump of an electron from an initial state to a final state of lesser emergy
ΔE = 13.606 (1 /
- 1 / n_{i}^{2})
the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon
DE = 13.606 (1/1 - 1/3²)
DE = 12.094 eV
let's reduce the energy to the SI system
DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J
let's find the wavelength is this energy, let's use Planck's equation to find the frequency
E = h f
f = E / h
f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴
f = 2.9186 10¹⁵ Hz
now we can look up the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 2.9186 10¹⁵
λ = 1.0278 10⁻⁷ m
let's reduce to nm
λ = 102.78 nm
This radiation is in the UV range, which occurs for wavelengths less than 400 nm.