Answer:
Coefficient of friction will be 0.587
Explanation:
We have given mass of the car m = 500 kg
Distance s = 18.25 m
Initial velocity of the car u = 14.5 m/sec
As the car finally stops so final velocity v = 0 m/sec
From second equation of motion



We know that acceleration is given by



So coefficient of friction will be 0.587
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
It'd be an unbalanced force
Answer:

Work done = = 5 kJ
Explanation:
Given data:
volume of nitrogen 



Polytropic exponent n = 1.4
![\frac{T_2}{T_1} = [\frac{P_2}{P_1}]^{\frac{n-1}{n}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7BT_1%7D%20%3D%20%5B%5Cfrac%7BP_2%7D%7BP_1%7D%5D%5E%7B%5Cfrac%7Bn-1%7D%7Bn%7D)
putting all value
![\frac{T_2}{473} = [\frac{80}{150}]^{\frac{1.4-1}{1.4}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7B473%7D%20%3D%20%5B%5Cfrac%7B80%7D%7B150%7D%5D%5E%7B%5Cfrac%7B1.4-1%7D%7B1.4%7D)

polytropic process is given as



work done 

= 5 kJ