Answer:
94
Explanation:
f = 2.57 x 10^13 Hz
E = 10 eV = 10 x 1.6 x 10^-19 J = 1.6 x 10^-18 J
Energy of each photon = h f
Where, h is Plank's constant
Energy of each photon = 6.63 x 10^-34 x 2.57 x 10^13 = 1.7 x 10^-20 J
Number of photons = Total energy / energy of one photon
N = (1.6 x 10^-18) / (1.7 x 10^-20) = 94.11 = 94
Answer:
Hearing loss due to sound energy damaging the nerve cells in the inner ear. Many animals behavior is influenced by sound energy. They learn to associate events with sounds, so they run when something crunches in the dry grass (might be a coyote), but won't be bothered by the sound of a waterfall. Mood is affected by sound energy. A wine glass can break with sound energy, if the frequency matches the resonant frequency of the wine glass and the amplitude is great enough (one Mythbusters show featured a professional singer who broke a wine glass with his voice without any amplification).
Sound energy causes the particles in the medium it is traveling through to vibrate.
Unlike sound electromagnetic waves can travel trough empty space
hope these different answers help
<span> 1.the atom has 7 neutrons and 8 protons....
because the positively charged particles are the protons ...and 8 is also the atomic number ...so number of neutrons can be calculated by subtracting </span>atomic number from the mass number...which gives us the neutrons 7 ...
Hope it helps !!!
Answer with Explanation:
a. Option d is true.
a negatively charged plane parallel to the end faces of the cylinder
b. Radius of cylinder, r=0.66m
Magnitude of electric field, E=300 N/C
We have to find the net flux through the closed surface.
Net electric flux,


c.
Net charge,
Where




Where 
<span>In the </span>natural logarithm<span> format or in equivalent notation (see: </span>logarithm) as:
base<span> e</span><span> assumed, is called the </span>Planck entropy<span>, </span>Boltzmann entropy<span>, Boltzmann entropy formula, or </span>Boltzmann-Planck entropy formula<span>, a </span>statistical mechanics<span>, </span><span> </span>S<span> is the </span>entropy<span> of an </span>ideal gas system<span>, </span>k<span> is the </span>Boltzmann constant<span> (ideal </span>gas constant R<span> divided by </span>Avogadro's number N<span>), and </span>W<span>, from the German Wahrscheinlichkeit (var-SHINE-leash-kite), meaning probability, often referred to as </span>multiplicity<span> (in English), is the number of “</span>states<span>” (often modeled as quantum states), or "complexions", the </span>particles<span> or </span>entities<span> of the system can be found in according to the various </span>energies<span> with which they may each be assigned; wherein the particles of the system are assumed to have uncorrelated velocities and thus abide by the </span>Boltzmann chaos assumption<span>.
I hope this helps. </span>