Answer:
b. It should be dumped in a beaker labeled "waste copper" on one's bench during the experiment.
d. It should be disposed of in the bottle for waste copper ion when work is completed.
Explanation:
Solutions containing copper ion should never be disposed of by dumping them in a sink or in common trash cans, because this will cause pollution in rivers, lakes and seas, being a contaminating agent to both human beings and animals. They should be placed in appropriate compatible containers that can be hermetically sealed. The sealed containers must be labeled with the name and class of hazardous substance they contain and the date they were generated.
It never should be returned to the bottle containing the solution, since it can contaminate the solution of the bottle.
In the Solutions and Spectroscopy experiments there is always wastes.
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm
Answer:
Explanation:
2S + 3O₂ = 2SO₃
2moles 3 moles
2 moles of S react with 3 moles of O₂
5 moles of S will react with 3 x 5 / 2 moles of O₂
= 7.5 moles of O₂ .
O₂ remaining unreacted = 10 - 7.5 = 2.5 moles .
All the moles of S will exhausted in the reaction and 2.5 moles of oxygen will be left .
Chlorine would become a liquid. Its boiling point is around -34 Celsius so at any temperature below that it would be liquid.
A Beta particles is emitted when an atom of 85Kr spontaneously decays.