Answer:
A decrease in temperature would decrease kinetic energy, therefore decreasing collisions possible.
Explanation:
A gas at a fixed volume is going to have collisions automatically. If you decrease the temperature (same thing as decreasing kinetic energy) you are cooling down the molecules in the container which gives them less energy and "relaxes" them. This decrease in energy causes them to move around much slower and causing less collisions, at a much slower rate. In a perfect world, these collisions do not slow down the molecule but we know that they do, just a very very small unmeasurable amount.
<span> elevation between index contours would be </span><span>125 feet</span>
Answer:
The electron pair geometry is Trigonal planar
Molecular geometry - Bent
Approximate bond angle - <120°
Explanation:
The valence shell electron pair repulsion theory enables us to predict the shapes of molecules based on the number of electron pairs present on the valence shell of the central atom and based on the hybridization state of the central atom.
sp2 hybridization corresponds to trigonal planar geometry. Let us recall that the presence of lone pairs causes a deviation of the molecular geometry from the expected geometry based on the number of electron pairs.
Hence, owing to one lone pair present, the observed molecular geometry is bent.
So I believe you are supposed to take notes based on the guiding questions (the questions on the side).