The correct answer would be the first option. The process that would need more energy would be vaporizing 1 kg of saturated liquid water at a pressure of 1 atmosphere. This can be seen from the latent heat of vaporization of each system. For the saturated water at 1 atm, the latent heat is equal to 40.7 kJ per mole while, at 8 atm, the latent heat is equal to 36.4 kJ per mole. The latent heat of vaporization is the amount of heat needed in order to vaporize a specific amount of substance without any change in the temperature. As we can observe, more energy is needed by the liquid water at 1 atm.
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
The focal point of a concave mirror is halfway along the radius, therefore the radius would be 2•16= 32 cm
Answer:

Explanation:
Given data
Space vehicle speed=5425 km/h relative to earth
The rocket motor speed=81 km/h and mass 4m
The command has mass m
From the conservation of momentum as the system isolated

Since the motion in on direction we can drop the unit vector direction

Where M is the mass of space vehicle which equals to sum of the motors mass and command mass.
The velocity of the motor relative to the earth equals the velocity of the motor relative to command plus the velocity of the command relative to earth

Where Vmc is the velocity of motor relative to command
This yields

Substitute the given values
Answer:
The answer to your question is: Ke = 3000 Joules
Explanation:
Data
mass = 15 kg
speed = 20 m/s
Kinetic energy = ?
Equation


Ke = 3000 Joules