Sodium carbonate is used to neutralised sulfuric acid, H₂SO₄. Sodium carbonate is the salt of stron base (NaOH) and weak acid (H₂CO₃). The balanced chemical reaction for neutralization is as follows:
Na₂CO₃ + H₂SO₄→ Na₂SO₄ + H₂CO₃
From balanced chemical equation, it is clear that one mole of Na₂CO₃ is required to neutralize one mole of H₂SO₄. Molar mass of Na₂CO₃= 106 g/mol=0.106 kg/mol and molar mass of H₂SO₄= 98 g/mol=0.098 kg/mol.
To neutralize 0.098 kg of H₂SO₄ amount of Na₂CO₃ required is 0.106 kg, so, to neutralize 5.04×10³ kg of H₂SO₄, Na₂CO₃ required is=
kg= 5.451 X 10³ kg.
D IS THE ANSWER TO YOUR QUESTION
Answer: 8.7 grams
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:


As oxygen is in excess, Aluminium is the limiting reagent and limits the formation of products.
According to stoichiometry:
4 moles of aluminium give = 2 moles of 
Thus 0.17 moles of aluminium give=
Mass of 
Thus the mass of
is 8.7 grams
Answer:
reaction B is the best one I would choose
Answer:
5.31x10⁻⁶ C
Explanation:
The cube is located 100 m altitude from the ground, so the superior face is at 100m and has E = 70 N/C, and the inferior face is at the ground with E = 130 N/C.
The electric field is perpendicular to the bottom and the top of the cube, so the total flux is the flux at the superior face plus the flux at the inferior face:
Фtotal = Ф100m + Фground
Where Ф = E*A*cos(α). α is the angle between the area vector and the field (180° at the topo and 0° at the bottom):
Фtotal = E100*A*cos(180°) + Eground*A*cos(0°)
Фtotal = 70A*(-1) + 130*A*1
Фtotal = 60A
By Gauss' Law, the flux is:
Фtotal = q/ε, where q is the charge, and ε is the permittivity constant in vacuum = 8.854x10⁻¹² C²/N.m²
A = 100mx100m = 10000 m²
q = 60*10000*8.854x10⁻¹²
q = 5.31x10⁻⁶ C