In an ionic compound the atoms are linked via ionic bonds. These are formed by the transfer of electrons from one atom to the other. The atom that loses electrons gains a positive charge whereas the atom that accepts electrons gains a negative. This happens in accordance with the octet rule wherein each atom is surrounded by 8 electrons
In the given example:
The valence electron configuration of Iodine (I) = 5s²5p⁵
It needs only one electron to complete its octet.
In the given options:
K = 4s¹
C = 2s²2p²
Cl = 3s²3p⁵
P = 3s²3p³
Thus K can donate its valence electron to Iodine. As a result K, will gain a stable noble gas configuration of argon while iodine would gain an octet. This would also balance the charges as K⁺I⁻ creating a neutral molecule.
Ans: Potassium (K)
The answer would be Rocks, metals, hydrogen compounds, hydrogen and helium, all in gaseous form.
Answer:
occur if two of the ions form an insoluble ionic compound, which precipitates out of solution
Explanation:
When two ionic compounds are dissolved in water, a double replacement reaction takes place if two of the ions form an insoluble ionic compound, which precipitates out of solution. In double displacement reaction ions switch partners. And hence, produce an insoluble precipitate.
Answer:
Specific heat of ethyl chloride in gas and liquid phases, enthalpy of vaporization and specific heat of solid surface.
Explanation:
In order to determine the final temperature, the heat lost by the chloride needs to be found. This would require the specific heat in both phases and the enthalpy of vaporization. (you will use q=mc(delta)T and q=m(delta)H)
Then the energy gained by the surface needs to be found. This will require the specific heat in order to use the q=mc(delta)T equation.