Answer:
0.5m
Explanation:
v=f×lamda
v is 300m/s, f is 600Hz, lamda is ?
lamda=v/f
lamda=300/600
lamda =3/6=1/2m
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps
Answer:
0.159
Explanation:
the formula to find its is 1÷2*gt^2
The height of the balcony may be calculated through the equation,
h = V₀t + 0.5gt²
where h is the height, V₀ is the initial velocity, g is the gravitational constant and t is time. Substituting the values given above,
h = (5 m/s)(2s) + 0.5(10 m/s²)(2 s)²
h = 30 m
Thus, the height of the balcony is 30 meters.
Well it seems that you did not give answer choices, but that its fine since we can use newtons law of universal gravitational, Fg = GM1M2/r^2. So G is the gravitational constant, which is 6.67*10^-11, we can plug in 6*1024 for M1, and 7*1022 for M2, and 3.8*108 for r. Which then we get 1.74 * 10^8 N as the force of attraction between the Earth and the moon.