Answer:

Explanation:
given,
length of ladder = 10 ft
let x be the distance of the bottom and y be the distance of the top of ladder.
x² + y² = 100
differentiating with respect to time we get
..............(1)
when x = 8 and y = 6 and when \dfrac{dx}{dt} = 1.4ft/s
from equation (1)
now,


let the angle between the ladders be θ

y = xtan θ




As a head-up, it is important to notice that a white dwarf only shines thanks to the stored energy and light, because a white dwarf doesn't have any hydrogen left to perform nuclear fusion.
Now the process:
First, the white dwarf accumulates all the extracted matter from its companion, onto its own surface. This extra matter increases the white dwarf's temperature and density.
After a while, the star reaches about 10 million K, so nuclear fusion can begin. The hydrogen that has been "stolen" from the other star and accumulated in the white dwarf's surface it's used for the fusion, dramatically increasing the star's brightness for a short time, causing what we know as a Nova.
As this fuel its quickly burnt out or blown into space, the star goes back to its natural white dwarf state. Since the white dwarf nor the companion star are destroyed in this process, it can happen countless of times during their lifespan.
Answer:
a. A = 0.1656 m
b. % E = 1.219
Explanation:
Given
mB = 4.0 kg , mb = 50.0 g = 0.05 kg , u₁ = 150 m/s , k = 500 N / m
a.
To find the amplitude of the resulting SHM using conserver energy
ΔKe + ΔUg + ΔUs = 0
¹/₂ * m * v² - ¹/₂ * k * A² = 0
A = √ mB * vₓ² / k
vₓ = mb * u₁ / mb + mB
vₓ = 0.05 kg * 150 m / s / [0.050 + 4.0 ] kg = 1.8518
A = √ 4.0 kg * (1.852 m/s)² / (500 N / m)
A = 0.1656 m
b.
The percentage of kinetic energy
%E = Es / Ek
Es = ¹/₂ * k * A² = 500 N / m * 0.1656²m = 13.72 N*0.5
Ek = ¹/₂ * mb * v² = 0.05 kg * 150² m/s = 1125 N
% E = 13.72 / 1125 = 0.01219 *100
% E = 1.219
NO musical instrument produces a 'pure' tone with only a
single frequency in it.
EVERY instrument produces more or less harmonics (multiples)
in addition to the basic frequency it's playing.
The percussion instruments (drums etc) are the richest producers
of bunches of different frequencies.
Fuzzy electric guitars are next richest.
The strings and brass instruments are moderate producers of
harmonics ... I can't remember which is greater than the other.
Then come the woodwinds ... clarinet, oboe, etc.
The closest to 'pure' tones of single frequency are the sounds
made by the flute and piccolo, but even these are far from 'pure'.
The only way to get a true single-frequency sound is from an
electronic 'sine wave' generator.