Answer:
a) v = 0.7071 v₀, b) v= v₀, c) v = 0.577 v₀, d) v = 1.41 v₀, e) v = 0.447 v₀
Explanation:
The speed of a wave along an eta string given by the expression
v = 
where T is the tension of the string and μ is linear density
a) the mass of the cable is double
m = 2m₀
let's find the new linear density
μ = m / l
iinitial density
μ₀ = m₀ / l
final density
μ = 2m₀ / lo
μ = 2 μ₀
we substitute in the equation for the velocity
initial v₀ =
with the new dough
v =
v = 1 /√2 \sqrt{ \frac{T_o}{ \mu_o} }
v = 1 /√2 v₀
v = 0.7071 v₀
b) we double the length of the cable
If the cable also increases its mass, the relationship is maintained
μ = μ₀
in this case the speed does not change
c) the cable l = l₀ and m = 3m₀
we look for the density
μ = 3m₀ / l₀
μ = 3 m₀/l₀
μ = 3 μ₀
v =
v = 1 /√3 v₀
v = 0.577 v₀
d) l = 2l₀
μ = m₀ / 2l₀
μ = μ₀/ 2
v =
v = √2 v₀
v = 1.41 v₀
e) m = 10m₀ and l = 2l₀
we look for the density
μ = 10 m₀/2l₀
μ = 5 μ₀
we look for speed
v =
v = 1 /√5 v₀
v = 0.447 v₀
Answer:
The answer is 13 however make sure if they ask for a certain measurement like meter answer it by saying 13 meters.
Explanation:
This basically turns into basic algebra if you know the formula for work. The formula for work is W=F*d
Here are the variables that you know 650J=50N*d so you need d.
All you do is divide 650J by 50N and you get a total of 13 (meters since I don't know what they want you to put it in).
Answer:
<em> B.0</em>
Explanation:
Change in momentum: This is defined as the product of mass and change in velocity of a body. or it can be defined as the product of force and time of a body. The fundamental unit of change in momentum is kg.m/s
Change in momentum = M(V-U)......................... Equation 1
where M = mass of the ball, V = final velocity of the ball, U = initial velocity of the ball.
Let: M = m kg and V = U = v m/s
Substituting these values into equation 1
Change in momentum = m(v-v)
Change in momentum = m(0)
Change in momentum = 0 kg.m/s
<em>Therefore the momentum of the ball has not changed.</em>
<em>The right option is B.0</em>
Answer:
below
Explanation:
Ice melts, meaning it has a watery layer upon its surface. This allows things to be moving like they are on a liquid but it has the solidity of a solid. The thin metal of the ice skates also decrease the surface area meaning it exerts more force but in turn, it allows you to move faster and further reduces friction.
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6