Answer:
γ
=0.01, P=248 kN
Explanation:
Given Data:
displacement = 2mm ;
height = 200mm ;
l = 400mm ;
w = 100 ;
G = 620 MPa = 620 N//mm²; 1MPa = 1N//mm²
a. Average Shear Strain:
The average shear strain can be determined by dividing the total displacement of plate by height
γ
= displacement / total height
= 2/200 = 0.01
b. Force P on upper plate:
Now, as we know that force per unit area equals to stress
τ = P/A
Also, τ = Gγ
By comapring both equations, we get
P/A = Gγ
------------ eq(1)
First we need to calculate total area,
A = l*w = 400 * 100= 4*10^4mm²
By putting the values in equation 1, we get
P/40000 = 620 * 0.01
P = 248000 N or 2.48 *10^5 N or 248 kN
Answer:
Yes
Explanation:
The core of an electromagnet serves to stabilize the magnetic field created by the wire. The thicker the core, the more metal there is to amplify the current. Therefore, a thicker core does make an electromagnet stronger. Hope this helps!
Answer:
1. Tokyo skytree tower is the tallest tower in the world, measuring 2080 feet. That's almost twice the size of the Eiffel Tower!
2.The process of building the tower began in 2008. The project was completed on 29 February 2012.
3. Pairing form with function, Skytree will serve as a TV and radio broadcast tower.
Answer:
B A and C
Explanation:
Given:
Specimen σ
σ
A +450 -150
B +300 -300
C +500 -200
Solution:
Compute the mean stress
σ
= (σ
+ σ
)/2
σ
= (450 + (-150)) / 2
= (450 - 150) / 2
= 300/2
σ
= 150 MPa
σ
= (300 + (-300))/2
= (300 - 300) / 2
= 0/2
σ
= 0 MPa
σ
= (500 + (-200))/2
= (500 - 200) / 2
= 300/2
σ
= 150 MPa
Compute stress amplitude:
σ
= (σ
- σ
)/2
σ
= (450 - (-150)) / 2
= (450 + 150) / 2
= 600/2
σ
= 300 MPa
σ
= (300- (-300)) / 2
= (300 + 300) / 2
= 600/2
σ
= 300 MPa
σ
= (500 - (-200))/2
= (500 + 200) / 2
= 700 / 2
σ
= 350 MPa
From the above results it is concluded that the longest fatigue lifetime is of specimen B because it has the minimum mean stress.
Next, the specimen A has the fatigue lifetime which is shorter than B but longer than specimen C.
In the last comes specimen C which has the shortest fatigue lifetime because it has the higher mean stress and highest stress amplitude.