Answer:
Option C = internal energy stays the same.
Explanation:
The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.
So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.
Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.
The amount of heat,q = Work,w.
In the concept of free expansion the only thing that changes is the volume.
Answer:
my_mul:
.globl my_mul
my_mul:
//Multiply X0 and X1
// Does not handle negative X1!
// Note : This is an in efficient way to multipy!
SUB SP, SP, 16 //make room for X19 on the stack
STUR X19, [SP, 0] //push X19
ADD X19, X1, XZR //set X19 equal to X1
ADD X9 , XZR , XZR //set X9 to 0
mult_loop:
CBZ X19, mult_eol
ADD X9, X9, X0
SUB X19, X19, 1
B mult_loop
mult_eol:
LDUR X19, [SP, 0]
ADD X0, X9, XZR // Move X9 to X0 to return
ADD SP, SP, 16 // reset the stack
BR X30
Explanation:
Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Answer:
A. National Highway Safety Act
Explanation:
The National Highway Safety Act establishes general guidelines concerning licensing, vehicle registration and inspection, and traffic laws for state regulations. The act was made in 1966 to reduce the amount of death on the highway as a result of increase in deaths by 30% between 1960 and 1965
National Traffic and Motor Vehicle Safety Act regulates vehicle manufacturers by ensuring national safety standards and issuance recalls for defective vehicles
Uniform Traffic Control Devices Act defines shapes, colors and locations for road signs, traffic signals, and road markings
JT2 oaoaosnforeneomdocdmsnsksmsmsodnfnfj