Answer: I will list them down below!
Explanation:
He can buy 6, 50 cent candies.
He can buy 30, 20 cent candies.
He can buy 6, 30 cent candies and 6, 20 cent candies.
He can buy 15, 20 cent candies and 3, 50 cent candies.
He can by 3, 20 and 30 cent candies and 3, 50 cent candies.
That's it.
Hope this helps!
Answer:
it depends on the but i would recommend check in the front next to the turbo intake.
Answer:
The spring is compressed by 0.275 meters.
Explanation:
For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of weight of the piston and the force the spring exerts on the piston
Mathematically we can write

we know that


Now the force exerted by an spring compressed by a distance 'x' is given by 
Using the above quatities in the above relation we get

If it is. DC, direct current reverse the polarity of power leads on the motor.
If it is a 3 phase ac alternating current, reverse any of the two of three leads.
Disconnect power before attempting.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft