1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
5

Calculate the density of a material that has a mass of 52.457 and a volume of 13.5

Physics
1 answer:
Arte-miy333 [17]3 years ago
7 0
The density is about 3.88. You just have to divide the mass and the volume. You can check this on a calculator, too. Hope this helped
You might be interested in
at location a, what are the directions of the electric fields contributed by the electron. calculate the magnitudes of the elect
Lisa [10]

We can use the equation E = k | Q | r 2 E = k | Q | r2 to find the magnitude of the electric field. The direction of the electric field is determined by the sign of the charge,

<h3>What is electric and magnetic field ?</h3>

With the use of electricity and other types of artificial and natural illumination, invisible energy fields known as electric and magnetic fields (EMFs) and radiation are created.

  • While the magnetic field is discernible by the force it exerts on other magnetic particles and moving electric charges, the electric field is actually the force per unit charge experienced by a non-moving point charge at any given location inside the field.

Learn more about Electromagnetic field here:

brainly.com/question/14372859

#SPJ4

4 0
1 year ago
A ball is projected horizontally from the top of a bertical building 25.0m above the ground level with an initial velocity of 8.
kirill115 [55]

Answer:

Solution given:

height [H]=25m

initial velocity [u]=8.25m/s

g=9.8m/s

now;

a. How long is the ball in flight before striking the ground?

Time of flight =?

Now

Time of flight=\sqrt{\frac{2H}{g}}

substituting value

  • =\sqrt{\frac{2*25}{9.8}}
  • =2.26seconds

<h3><u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>

b. How far from the building does the ball strike the ground?

<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?

we have

Horizontal range=u*\sqrt{\frac{2H}{g}}

  • =8.25*2.26
  • =18.63m

<h3><u>The ball strikes 18.63m far from building</u>. </h3>
7 0
2 years ago
What help in reversing direction of current of current​
Novay_Z [31]

Answer:

<em>To reverse the direction of an electric current, we simply reverse the voltage either automatically with the help of some switching circuitry or manually by changing the voltage source terminals connection.  </em>

Explanation:

For electric current to flow, there must be a potential difference, usually referred to as the voltage. The electric current flow is analogous to the flow of water under the action of a pump, through a series of pipe connections. The voltage is similar to the driving action of the pump, and current flows the same way water flows. The resistance due to drag on the pipe wall is equivalent to electric resistance. For current to flow in the reverse direction, the voltage or rather, the potential difference is changed, causing the current to flow in the opposite direction. This can be done by switching the terminals of the voltage source, or by automatic means. The automatic switching can be done with a transistor based circuitry.

3 0
3 years ago
An astronaut working with many tools some distance away from a spacecraft is stranded when the "maneuvering unit" malfunctions.
N76 [4]

Answer:

He can return to the spacecraft by sacrificing some of the tools employing the principle of conservation of momentum.

Explanation:

By carefully evaluating his direction back to the ship, the astronaut can throw some of his tools in the opposite direction to that. On throwing those tools of a certain mass, they travel at a certain velocity giving him velocity in the form of recoil in the opposite direction of the velocity of the tools. This is same as a gun and bullet recoil momentum conservation. It is also the principle on which the operational principles of their maneuvering unit is designed.

6 0
3 years ago
A girl is sledding down a slope that is inclined at 30º with respect to the horizontal. The wind is aiding the motion by providi
OleMash [197]

Answer:

The sled required 9.96 s to travel down the slope.

Explanation:

Please, see the figure for a description of the problem. In red are the x and y-components of the gravity force (Fg). Since the y-component of Fg (Fgy) is of equal magnitude as Fn but in the opposite direction, both forces get canceled.

Then, the forces that cause the acceleration of the sled are the force of the wind (Fw), the friction force (Ff) and the x-component of the gravity force (Fgx).

The sum of all these forces make the sled move. Finding the resulting force will allow us to find the acceleration of the sled and, with it, we can find the time the sled travel.

The magnitude of the friction force is calculated as follows:

Ff = μ · Fn

where :

μ = coefficient of kinetic friction

Fn =  normal force

The normal force has the same magnitude as the y-component of the gravity force:

Fgy = Fg · cos 30º = m · g · cos 30º

Where

m = mass

g = acceleration due to gravity

Then:

Fgy = m · g · cos 30º = 87.7 kg · 9.8 m/s² · cos 30º

Fgy = 744 N

Then, the magnitude of Fn is also 744 N and the friction force will be:

Ff = μ · Fn = 0.151 · 744 N = 112 N

The x-component of Fg, Fgx, is calculated as follows:

Fgx = Fg · sin 30º = m·g · sin 30º = 87.7 kg · 9.8 m/s² · sin 30º = 430 N

The resulting force, Fr, will be the sum of all these forces:

Fw + Fgx - Ff = Fr

(Notice that forces are vectors and the direction of the friction force is opposite to the other forces, then, it has to be of opposite sign).

Fr = 161 N + 430 N - 112 N = 479 N

With this resulting force, we can calculate the acceleration of the sled:

F = m·a

where:

F = force

m = mass of the object

a = acceleration

Then:

F/m = a

a = 479N/87.7 kg = 5.46 m/s²

The equation for the position of an accelerated object moving in a straight line is as follows:

x = x0 + v0 · t + 1/2 · a · t²

where:

x = position at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the sled starts from rest and the origin of the reference system is located where the sled starts sliding, x0 and v0 = 0.

x = 1/2· a ·t²

Let´s find the time at which the position of the sled is 271 m:

271 m = 1/2 · 5.46 m/s² · t²

2 · 271 m / 5.46 m/s² = t²

<u>t = 9.96 s </u>

The sled required almost 10 s to travel down the slope.

8 0
3 years ago
Other questions:
  • Suppose the initial position of an object is zero, the starting velocity is 3 m/s and the final velocity was 10 m/s. The object
    10·2 answers
  • What is it called when sediment is dropped and comes to rest?
    7·2 answers
  • The current in a hair dryer measures 20.0 amps. The resistance of the hair dryer is 6 ohms. What is the voltage?
    14·1 answer
  • Water drips from the nozzle of a shower onto the floor 190 cm below. The drops fall at regular (equal) intervals of time, the fi
    10·1 answer
  • A runner accelerates to 4.2 m/s2 for 10 seconds before winning the race. How far did he/she run?
    10·2 answers
  • Describe the patterns created by minerals in foliated rock.
    9·1 answer
  • A measure of the amount of light received on Earth is a star's ____.
    10·2 answers
  • Based on the bond energies given for each of the following which is the most stable? O=O 498 kJ/mol N≡N 946 kJ/mol C=C 614 kJ/mo
    10·1 answer
  • What is the magnitude of the resultant vector? Round your answer to the nearest tenth
    12·1 answer
  • A 7.40-kg object initially has 347 J of gravitational potential energy. Then an elevator lifts the object a distance of 20.6 m a
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!