Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, 


creep rate in the steady state


but Tinitial = 0


solving the above equation,
we get
Tfinal = 2459.82 hr
Answer:
connecting two independent clauses
Complete Question
The cars of a roller-coaster ride have a speed of 19.0 km/h as they pass over the top of the circular track. Neglect any friction and calculate their speed v when they reach the horizontal bottom position. At the top position, the radius of the circular path of their mass centers is 21 m, and all six cars have the same mass.V = -18 m What is v?X km/h
Answer:

Explanation:
Velocity 
Radius 
initial velocity u
Generally the equation for Angle is mathematically given by




Generally
Height of mass



Generally the equation for Work Energy is mathematically given by

Therefore


