No clue sorry man I would help but I need help too
Answer:Decay rate constant,k = 0.00376/hr
Explanation:
IsT Order Rate of reaction is given as
In At/ Ao = -Kt
where [A]t is the final concentration at time t and [A]o is the inital concentration at time 0, and k is the first-order rate constant.
Initial concentration = 80 mg/L
Final concentration = 50 mg/L
Velocity = 40 m/hr
Distance= 5000 m
Time taken = Distance / Time
5000m / 40m/hr = 125 hr
In At/ Ao = -Kt
In 50/80 = -Kt
-0.47 = -kt
- K= -0.47 / 125
k = 0.00376
Decay rate constant,k = 0.00376/hr
Answer:
(a) The mean time to fail is 9491.22 hours
The standard deviation time to fail is 9491.22 hours
(b) 0.5905
(c) 3.915 × 10⁻¹²
(d) 2.63 × 10⁻⁵
Explanation:
(a) We put time to fail = t
∴ For an exponential distribution, we have f(t) = 
Where we have a failure rate = 10% for 1000 hours, we have(based on online resource);

e^(1000·λ) - 0.1·e^(1000·λ) = 1
0.9·e^(1000·λ) = 1
1000·λ = ㏑(1/0.9)
λ = 1.054 × 10⁻⁴
Hence the mean time to fail, E = 1/λ = 1/(1.054 × 10⁻⁴) = 9491.22 hours
The standard deviation = √(1/λ)² = √(1/(1.054 × 10⁻⁴)²)) = 9491.22 hours
b) Here we have to integrate from 5000 to ∞ as follows;
![p(t>5000) = \int\limits^{\infty}_{5000} {\lambda e^{-\lambda t}} \, dt =\left [ -e^{\lambda t}\right ]_{5000}^{\infty} = e^{5000 \lambda} = 0.5905](https://tex.z-dn.net/?f=p%28t%3E5000%29%20%3D%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B5000%7D%20%7B%5Clambda%20e%5E%7B-%5Clambda%20t%7D%7D%20%5C%2C%20dt%20%3D%5Cleft%20%5B%20%20-e%5E%7B%5Clambda%20t%7D%5Cright%20%5D_%7B5000%7D%5E%7B%5Cinfty%7D%20%3D%20e%5E%7B5000%20%5Clambda%7D%20%3D%200.5905)
(c) The Poisson distribution is presented as follows;

p(x = 3) = 3.915 × 10⁻¹²
d) Where at least 2 components fail in one half hour, then 1 component is expected to fail in 15 minutes or 1/4 hours
The Cumulative Distribution Function is given as follows;
p( t ≤ 1/4)
.
Answer:
b. 2.3 kPa.
Explanation:
This situation can be modelled by Bernoulli's Principle, as there are no energy interaction throughout the multisection pipe and current lines exists between both ends. Likewise, this system have no significant change in gravitational potential energy since it is placed horizontally on the ground and is described by the following model:

Where:
,
- Pressures at the beginning and at the end of the current line, measured in kilopascals.
- Water density, measured in kilograms per cubic meter.
,
- Fluid velocity at the beginning and at the end of the current line, measured in meters per second.
Now, the pressure difference between these two points is:

If
,
and
, then:


(1 kPa is equivalent to 1000 Pa)
Hence, the right answer is B.