<span>The momentum before the collision is equal to the momentum after the collision</span>
Answer:
<em>a) A positive current will be induced in the coil</em>
Explanation:
Electromagnetic induction is the induction of an electric field on a conductor due to a changing magnetic field flux. The change in the flux can be by moving the magnet relative to the conductor, or by changing the intensity of the magnetic field of the magnet. In the case of this electromagnets<em>, the gradual increase in the the electromagnet's field strength will cause a flux change, which will in turn induce an electric current on the coil.</em>
According to Lenz law, the induced current acts in such a way as to negate the motion or action that is producing it. <em>A positive current will be induced on the coil so as to repel any form of attraction between the north pole of the electromagnet and the coil</em>. This law obeys the law of conservation of energy, since work has to be done to move the move them closer to themselves.
Answer:
9.6 m
Explanation:
This is a case of motion under variable acceleration . So no law of motion formula will be applicable here. We shall have to integrate the given equation .
a = 3.6 t + 5.6
d²x / dt² = 3.6 t + 5.6
Integrating on both sides
dx /dt = 3.6 t² / 2 + 5.6 t + c
where c is a constant.
dx /dt = 1.8 t² + 5.6 t + c
when t = 0 , velocity dx /dt is zero
Putting these values in the equation above
0 = 0 +0 + c
c = 0
dx /dt = 1.8 t² + 5.6 t
Again integrating on both sides
x = 1.8 t³ / 3 + 5.6 x t² /2 + c₁
x = 0.6 t³ + 2.8 t² + c₁
when t =0, x = 0
c₁ = 0
x = 0.6 t³ + 2.8 t²
when t = 1.6
x = .6 x 1.6³ + 2.8 x 1.6²
= 2.4576 + 7.168
= 9.6256
9.6 m
Answer:
It is Conductivity because it is the measure of the ease.
The answer to this question is:
B) Are capable of suffering.