Explanation:
The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.
The relation between wave period and frequency is as follows.
T = \frac{1}{f}T=
f
1
where, T = time period
f = frequency
It is given that wave period is 18 seconds. Therefore, calculate the wave period as follows.
T = \frac{1}{f}T=
f
1
or, f = \frac{1}{T}f=
T
1
= \frac{1}{18 sec}
18sec
1
= 0.055 per second (1cycle per second = 1 Hertz)
or, f = 5.5 \times 10^{-2} hertz5.5×10 −2 hertz
<h3>Thus, we can conclude that the frequency of the wave is 5.5 \times 10^{-2} hertz5.5×10 −2 hertz .</h3>
Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
The statement "<span>Forces always act alone" is false. Force do not always act alone. It is always accompanied by another force that is always opposite to it. </span>
Answer:
Alice Distance = 100 meters
Peter's Distance = 3 km
Alice Displacement and Peter's displacement are both 100 meters upwards.
Explanation:
To solve this question, we have to first define distance and displacement.
Distance is simply the measurement of the sum of all paths travelled from one point to another while displacement is measurement of the shortest distance from initial point to final point.
Now, Alice and Peter are moving from the same point.
Alice distance travelled is 100 meters.
Also, her displacement will be 100 meters because it is the shortest distance to the summit of the cliff.
Now, for Peter, he decides to take a longer route which is 3 km in distance.
However, the shortest path which is the displacement is still 100 meters.
Thus, Peter's displacement is 100 meters.