Answer:
Explanation:
I'm not sure you can do this without just a bit more information. I can tell you what the mass of the water is when the rocks are removed. When we know that, we know the volume of the water that was displaced. whether or not this is enough information to determine the volume of the box, I'm not sure.
400 grams raises the box 1 cm.
The density of water = 1 gm / cm^3
400 grams of water = 400 mL or 400 cm^3
The volume of the displaced water = 400 cm^3
The volume a slice from the square prism is B*h
B = 400 cm^2
h = 1 cm
If the base is 400 cm^2 then each side is
s^2 = 400
sqrt(s^2)= sqrt(400)
s = 20
The volume of the box is 20^3 = 8000 cm^3
Answer:
Explanation:
Time to cover first 100 km = 1 hour.
time remaining = 3.15 - 1 = 2.15 hour .
Time to cover next 42 km = 1 hour .
Time remaining = 2.15-1 = 1.15 hour.
Distance to be covered = 310 - 142
= 168 km
least speed needed = distance remaining / time remaining
= 168 / 1.15
= 146.08 km / h .
Answer:
Explanation:
Let the velocity be v
Total energy at the bottom
= rotational + linear kinetic energy
= 1/2 Iω² + 1/2 mv² ( I moment of inertia of shell = mr² )
= 1/2 mr²ω² + 1/2 mv² ( v = ω r )
= 1/2 mv² +1/2 mv²
= mv²
mv² = mgh ( conservation of energy )
v² = gh
v = √gh
= √9.8 x 1.8
= 4.2 m /s
Each capacitor carry the same charge 'q'.
Discussion:
The voltage from the battery is distributed equally across all of the capacitors when they are linked in series. The three identical capacitors' combined voltage is computed as follows:
= V₁ +V₂ +V₃
This voltage may also be calculated using capacitance and charge;
V = Q/ C
= V₁ +V₂ +V₃
Provided that the total charge is 'q', hence the total voltage can be expressed as:
= (Q/C₁) + (Q/C₂) + (Q/C₃) = Q(1/C₁ +1/C₂ +1/C₃)
Therefore from the above explanation, it is concluded that each and every capacitor carry same charge 'q'.
Learn more about the capacitor here:
brainly.com/question/17176550
#SPJ4