Light is a particle and wave
Answer:
0.0072 m³/s
Explanation:
Using Bernoulli's law
P₁ + 1/2ρv₁² = P₂ + 1/2ρv₂ since the pipe is horizontal
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
flow rate is constant
A₁v₁ = A₂v₂
A₁ = πr₁² = π (0.06/2)² = 0.0028278 m²
A₂ = πr₂² = π (0.0225)² = 0.00159 m²
v₁ = (A₂ / A₁)v₂
v₁ = (0.00159 m²/ 0.0028278 m²) v₂ = 0.562 v₂
substitute v₁ into the Bernoulli's equation
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
500 ( 1 - 0.3161 ) v₂² = (31.0 - 24 ) × 10³ Pa
341.924 v₂² = 7000
v₂² = 20.472
v₂ = √ 20.472 = 4.525 m/s
volume follow rate = 0.00159 m² × 4.525 m/s = 0.0072 m³/s
Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking