Answer:
Explanation:
Force on electron in an electric field E = eE where E is electric field .
acceleration = eE / m where m is mass of electron .
Putting the values
4 x 10⁶ = 1.6 x 10⁻¹⁹ x E / 9.1 x 10⁻³¹
E = 22.75 x 10⁻⁶ N/C
The direction of electric field will be towards west ( opposite to east )
because of negative charge on electron .
In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
Answer:
x(t) = -3sin2t
Explanation:
Given that
Spring force of, W = 720 N
Extension of the spring, s = 4 m
Attached mass to the spring, m = 45 kg
Velocity of, v = 6 m/s
The proper calculation is attached via the image below.
Final solution is x(t) = -3.sin2t
Answer: The forces acting on both of them will increase in magnitude.
Explanation:
According to Coulomb's law, the electrostatic force between two bodies is proportional to the product of their two charges. If the charge on A is increased this product increases in size (it must have been non-zero to begin with, since there was a force between them at first). Thus, the force between them rises.