(CH3)3N + H2O ---> (CH3)3NH+ + OH-
The equation of Kb:
Kb = [(CH3)3NH+][OH-]/[(CH3)3N]
<h3>
What do we know about the process of dissolution?</h3>
A solute can dissolve in a solvent in a solid, liquid, or gaseous phase to create a solution through the process of dissolution. Solubility. The greatest amount of a solute that may dissolve in a solvent at a particular temperature is known as its solubility. The solution is said to as saturated when the maximum amount of solute is present.
Several variables influence solubility, including:
- The solute's concentration
- The system's temperature
- Pressure (for gases in solution)
- The solvent's and solute's polarity
To learn more about pKb:
brainly.com/question/14124805
#SPJ4
The new pH is 7.69.
According to Hendersen Hasselbach equation;
The Henderson Hasselbalch equation is an approximate equation that shows the relationship between the pH or pOH of a solution and the pKa or pKb and the ratio of the concentrations of the dissociated chemical species. To calculate the pH of the buffer solution made by mixing salt and weak acid/base. It is used to calculate the pKa value. Prepare buffer solution of needed pH.
pH = pKa + log10 ([A–]/[HA])
Here, 100 mL of 0.10 m TRIS buffer pH 8.3
pka = 8.3
0.005 mol of TRIS.
∴ ![8.3 = 8.3 + log \frac{[0.005]}{[0.005]}](https://tex.z-dn.net/?f=8.3%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005%5D%7D%7B%5B0.005%5D%7D)
<em> </em>inverse log 0 = ![\frac{[B]}{[A]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
![\frac{[B]}{[A]} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%20%3D%201)
Given; 3.0 ml of 1.0 m hcl.
pka = 8.3
0.003 mol of HCL.
![pH = 8.3 + log \frac{[0.005-0.003]}{[0.005+0.003]}\\pH = 8.3 + log \frac{[0.002]}{[0.008]}\\\\pH = 8.3 + log {0.25}\\\\pH = 8.3 + (-0.62)\\pH = 7.69](https://tex.z-dn.net/?f=pH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005-0.003%5D%7D%7B%5B0.005%2B0.003%5D%7D%5C%5CpH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.002%5D%7D%7B%5B0.008%5D%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20log%20%7B0.25%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20%28-0.62%29%5C%5CpH%20%3D%207.69)
Therefore, the new pH is 7.69.
Learn more about pH here:
brainly.com/question/24595796
#SPJ1
Answer:
691.6 torr
Explanation:
Given data:
Initial temperature = 273 K
Initial pressure = 1 atm
Final temperature = -25 °C (-25 + 273 = 248 k)
Final pressure = ?
Solution:
P₁/T₁ = P₂/T₂
P₁ = Initial pressure
T₁ = Initial temperature
P₂ = Final pressure
T₂ = Final temperature
Now we will put the values in formula.
P₁/T₁ = P₂/T₂
P₂ = P₁T₂/T₁
P₂ = 1 atm × 248 K / 273 k
P₂ =248 atm. K / 273 K
P₂ = 0.91 atm
In torr:
0.91 × 760 = 691.6 torr
If I'm not mistaken it's C.