Answer:
1.930 * 10⁻⁹ mg of Mn⁺² are left unprecipitated.
Explanation:
The reaction that takes place is:
Mn⁺² + S⁻² ⇄ MnS(s)
ksp = [Mn⁺²] [S⁻²]
If the pksp of MnS is 13.500, then the ksp is:

From the problem we know that [S⁻²] = 0.0900 M
We use the ksp to calculate [Mn⁺²]:
3.1623*10⁻¹⁴= [Mn⁺²] * 0.0900 M
[Mn⁺²] = 3.514 * 10⁻¹³ M.
Now we can calculate the mass of Mn⁺², using the volume, concentration and atomic weight. Thus the mass of Mn⁺² left unprecipitated is:
3.514 * 10⁻¹³ M * 0.1 L * 54.94 g/mol = 1.930 * 10⁻¹² g = 1.930 * 10⁻⁹ mg.
Answer:
Solar energy absorbed at Earth’s surface is radiated back into the atmosphere as heat. As the heat makes its way through the atmosphere and back out to space, greenhouse gases absorb much of it. Why do greenhouse gases absorb heat? Greenhouse gases are more complex than other gas molecules in the atmosphere, with a structure that can absorb heat. They radiate the heat back to the Earth's surface, to another greenhouse gas molecule, or out to space.
There are several different types of greenhouse gases. The major ones are carbon dioxide, water vapor, methane, and nitrous oxide. These gas molecules all are made of three or more atoms. The atoms are held together loosely enough that they vibrate when they absorb heat. Eventually, the vibrating molecules release the radiation, which will likely be absorbed by another greenhouse gas molecule. This process keeps heat near the Earth’s surface. Most of the gas in the atmosphere is nitrogen and oxygen, which cannot absorb heat and contribute to the greenhouse effect.
Explanation:
Answer:
2.28
Explanation:
HCl(l) ===> H+ + cl-
HCl is a very strong acid. Almost all of it will decompose to the right. That means the concentration of H+ is 0.00530
pH = - log [H+]
pH = - log[0.00530]
pH = - - 2.2757
pH = 2.2757
Rounded this 2.28