Answer:
H = 0.673
Explanation:
given,
side of cubical crate = 0.74
weight of the crate = 600 N
magnitude of force = 330 N
the Horizontal distance of its Center of mass
= 0.74/2
= 0.37
Let the required Height be H
By Balancing the Torques, we get
H x 330 N = 0.37 x 600
330 H = 222
H = 0.673
hence, the height above the floor where force is acting is equal to 0.673 m
-- loud sounds
-- bright lights
-- strong radio signals
-- Slinkies that can pinch you painfully
-- a tsunami in the ocean
-- earthquakes above Richter 5 or 6
Answer:
the propagation velocity of the wave is 274.2 m/s
Explanation:
Given;
length of the string, L = 1.5 m
mass of the string, m = 0.002 kg
Tension of the string, T = 100 N
wavelength, λ = 1.5 m
The propagation velocity of the wave is calculated as;

Therefore, the propagation velocity of the wave is 274.2 m/s
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.
Answer:
The boat won't be able to move if the oars were out and there was no thruster. If there was a flow of the water then yes there would be a moving boat.