Answer:
Most likely, it will be harder to get strong magnets to change phase because they have more density.
Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have

here we know that

now here we have

so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
Answer:
hello your question is incomplete attached below is the missing part
answer : short period oscillations frequency = 0.063 rad / sec
phugoid oscillations natural frequency (
) = 4.27 rad/sec
Explanation:
first we have to state the general form of the equation
= 
where :


comparing the general form with the given equation
= 18.2329

hence the short period oscillation frequency (
) = 0.063 rad/sec
phugoid oscillations natural frequency (
) = 4.27 rad/sec
The question is about unclear since no picture provided. But from the question, it could be guessed that the box is moving back and forth on the frictionless plane at the amplitude of A in simple harmonic motion.
Answer:
D. At x=0, it's acceleration is at a maximum
Explanation:
As the box move forward, it reaches point A and than move backward. Theoretically, the box will move backwards, through its origin, to point -A and then going forward.
Point A is the maximum displacement of the box in this case. At this point, the box instantaneously stop to go backward. Therefore the velocity at that moment is zero.
From point -A, the box travel forward and keep building up speed due to the release in potential energy of the spring. And at point x=0, the velocity become maximum. After point x=0, the velocity of the box slows down due to the conversion of kinetic energy to potential energy of the spring. And as it reaches point A, it reaches zero velocity.
The same can be said as the box travels backward from point A to -A
1 g = 1 ÷ 1000 kg
= 0.001 kg
1 cm³ = 1 ÷ 100 ÷ 100 ÷ 100 m³
= 0.000001 m³
1 g/cm³ = 1 g / 1 cm³
= 0.001 kg / 0.000001 m³
= 1000 kg/m³
The density is 1000 kg/m³.