It will take 1.11 min to heat the sample to its melting point.
Melting point = - 20°C
Boiling point = 85°C
∆H of fusion = 180 J/g
∆H of vap = 500 J/g
C(solid) = 1.0 J/g °C
C(liquid) = 2.5 J/g °C
C(gas) = 0.5 J/g °C
Mass of sample = 25 g
Initial temperature = - 40°C
Final temperature = 100°C
Rate of heating = 450 J/min
Specific heat capacity formula:- q = m ×C×∆T
Here, q = heat energy
m = mass
C = specific heat
∆T = temperature change
Melting point = - 20°C
C(solid) = 1.0 J/g °C
∆T = final temperature - initial temperature = -20 - (-40) = 20
Put these value in Specific heat capacity formula
q = m ×C×∆T
q = 25×1.0×20
=500J
The Rate of heating = 450 J/min
i.e. 450J = 1min
so, 500J = 1.11min
1.11 minutes does it take to heat the sample to its melting point.
The specific heat capacity is defined as the amount of heat absorbed in line with unit mass of the material whilst its temperature increases 1 °C.
Learn more about specific heat capacity here:- brainly.com/question/26866234
#SPJ4
Answer:
2Mg + O2 → 2MgO
Explanation:
In all conbustion you should know, that reactans are an specific compound and O2, so the products must be CO2 and H2O, or in this case, the corresponding oxide.
The unit for work is ENERGY
It's the person that you in love with.<span />
B) 2
You would first balance GO4 by adding a coefficient of 3 in front of DnGO4 in the reactants. Then you’d balance the 3DnGO4 by adding a coefficient of 3 in front of Dn in the products. Finally you’d balance Eg by adding a coefficient of 2 in front of Eg to balance with the Eg2(GO4)3 in the products.