To find this, we will use this formula:
Molar mass of element
------------------------------------ x 100
Molar mass of compound
So, first lets calculate the mass of the compound as a whole. We use the atomic masses on the periodic table to determine this.
Ca: 40.078 g/mol
N2 (there is two nitrogens): 28.014 g/mol
O6 (there are six nitrogens: 3 times 2): 95.994 g/mol
When we add all of those numbers up together, we get 164.086. That is the molar mass for the whole compound. However, we are trying to figure out what percent of the compound oxygen makes up. From the molar mass, we know that 95.994 of the 164.086 is oxygen. Lets plug those numbers into our equation!
95.994
-----------
164.086
When we divide those two numbers, we get .585. When we multiply that by 100, we get 58.5.
So, the percent compostition of oxygen in Ca(NO3)2, or, calcium nitrate, is 58.5%.
Carbon discovered in Prehistoric times.. Discoverer will probably never be known
You are actually giving 5 points. Ps I just got five points for telling you that
Answer:
-219
Explanation:
1.5(339) - 1.5(485) = -219
Answer:
0.7561 g.
Explanation:
- The hydrogen than can be prepared from Al according to the balanced equation:
<em>2Al + 6HCl → 2AlCl₃ + 3H₂,</em>
It is clear that 2.0 moles of Al react with 6.0 mole of HCl to produce 2.0 moles of AlCl₃ and 3.0 mole of H₂.
- Firstly, we need to calculate the no. of moles of (6.8 g) of Al:
no. of moles of Al = mass/atomic mass = (6.8 g)/(26.98 g/mol) = 0.252 mol.
<em>Using cross multiplication:</em>
2.0 mol of Al produce → 3.0 mol of H₂, from stichiometry.
0.252 mol of Al need to react → ??? mol of H₂.
∴ the no. of moles of H₂ that can be prepared from 6.80 g of aluminum = (3.0 mol)(0.252 mol)/(2.0 mol) = 0.3781 mol.
- Now, we can get the mass of H₂ that can be prepared from 6.80 g of aluminum:
mass of H₂ = (no. of moles)(molar mass) = (0.3781 mol)(2.0 g/mol) = 0.7561 g.