Let's start by using the definition of acceleration. Acceleration is defined as the change in velocity over the change in time. In equation, that would be Δvelocity/Δtime. Based on the axes of the given graph, it shows the trend of position over time. So, the slope of the line and the curve shows the change of position over change of time, Δdistance/Δtime. In physics, this is the definition of speed or velocity. So, Maia is incorrect. Both curves show the speed or velocity of the object, and not acceleration. If the graph used a y-axis of velocity instead of position, then only at that instance, would be Maia be correct.
The difference between the two is, the straight line shows constant velocity while the curve line shows changing velocity.
Answer:
The pressure will be doubled.
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
From the group I A of the periodic table of the element can the chemist infer the element.
Answer:
Differences between Orbit and Orbitals
Orbit
An orbit is the simple planar representation of an electron.
It can be simply defined as the path that gets established in a circular motion by revolving the electron around the nucleus
The shape of molecules cannot be explained by an orbit as they are non-directional by nature.
An orbit that is well-defined goes against the Heisenberg principle.
Orbital
An orbital refers to the dimensional motion of an electron around the nucleus in a three-dimensional motion.
An orbital can simply be defined as the space or the region where the electron is likely to be found the most.
The shapes of the molecules can be found out as they are directional by nature.
An ideal orbital agrees with the theory of Heisenberg’s Principles.