Answer:
c = 1 / √(ε₀*μ₀)
Explanation:
The speed of the electromagnetic wave in free space is given in terms of the permeability and the permittivity of free space by
c = 1 / √(ε₀*μ₀)
where the permeability of free space (μ₀) is a physical constant used often in electromagnetism and ε₀ is the permittivity of free space (a physical constant).
Answer:
8.9
Explanation:
We can start by calculating the initial elastic potential energy of the spring. This is given by:
(1)
where
k = 35.0 N/m is the initial spring constant
x = 0.375 m is the compression of the spring
Solving the equation,

Later, the professor told the student that he needs an elastic potential energy of
U' = 22.0 J
to achieve his goal. Assuming that the compression of the spring will remain the same, this means that we can calculate the new spring constant that is needed to achieve this energy, by solving eq.(1) for k:

Therefore, Tom needs to increase the spring constant by a factor:

Answer:
it will take for the sphere to increase in potential by 1500 V, 503.71 s.
Explanation:
The charge on the sphere after t seconds is:
q = (1.0000049 - 1.0000000) t = 0.0000049 t
The voltage on the surface is
V = k *
= k 0.0000049 t / R
solve for t
t = (R*V) / (0.0000049 k) = (0.12 * 1500) / (0.0000049 *
) = 503.71 s
The answer to the given question is lightning.
Lightning is most probably the deadliest aspect of a thunderstorm. It is <span> a sudden </span>electrostatic discharge<span> during an </span>electrical storm. It happens <span> when there is an electrostatic discharge between </span>electrically charged<span> regions of a </span>cloud, which is referred as the i<span>ntra-cloud lightning or IC, between that cloud and another cloud or the CC lightning, or between a cloud and the ground (CG lightning).</span>
Yo, sorry I just resized I am so dumb.
The Answer would be C.
Becuase the wall is pushing off 9 becuase it took 5 and bounced back off 4 so
9 times 8= 72 kg m/s
Sorry about that ):