1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
3 years ago
10

This table shows the scores an archer named Janisa made in a qualifying event for an archery tournament.

Mathematics
1 answer:
zysi [14]3 years ago
7 0

Answer:

It is c

Step-by-step explanation:

The median is the middle number which is 8 and the range is the highest number minus the lowest number. The highest number is 10 and the lowest number is 3.  Subtract and you will get a range of 7

You might be interested in
You spin a spinner with 4 sections 1 yellow (y) , 1 purple (p) 1 red (r) and 1 blue (b) which is the sample space for one spin o
Ira Lisetskai [31]

Answer:

<h2>{Y,P,R,B}</h2>

Step-by-step explanation:

apex said it was right

<3

3 0
3 years ago
Read 2 more answers
Which of the tables represents a function?
Damm [24]
Input is domain and output is co-domain.
An expression is said to be a function if for every input, there is only one output. In table B, for every input, you get different outputs. Therefore, table B is a function. 
3 0
2 years ago
Read 2 more answers
The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as t
skad [1K]

Answer:

a) 0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

b) 0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

c) 0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

d) None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as the population mean and assume the population standard deviation of preparation fees is $100.

This means that \mu = 273, \sigma = 100

A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 30, s = \frac{100}{\sqrt{30}}

The probability is the p-value of Z when X = 273 + 16 = 289 subtracted by the p-value of Z when X = 273 - 16 = 257. So

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{30}}}

Z = 0.88

Z = 0.88 has a p-value of 0.8106

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{30}}}

Z = -0.88

Z = -0.88 has a p-value of 0.1894

0.8106 - 0.1894 = 0.6212

0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 50, s = \frac{100}{\sqrt{50}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{50}}}

Z = 1.13

Z = 1.13 has a p-value of 0.8708

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{50}}}

Z = -1.13

Z = -1.13 has a p-value of 0.1292

0.8708 - 0.1292 = 0.7416

0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 100, s = \frac{100}{\sqrt{100}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{100}}}

Z = 1.6

Z = 1.6 has a p-value of 0.9452

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{100}}}

Z = -1.6

Z = -1.6 has a p-value of 0.0648

0.9452 - 0.0648 =

0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?

None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

6 0
2 years ago
A cell phone measure 10 cm long,6 cm long,and 2cm high what is the volume of the cell phone
vaieri [72.5K]
The are of the cell phone is 184 hope this helped
3 0
2 years ago
How do you write 90,523 in word form
zmey [24]

nindy thousand five hundred and twenty three. Hope this helps!

4 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the area of the figure below using the following information:
    6·1 answer
  • What dose ARM stand for
    13·2 answers
  • If a taxi goes 45 miles per hour and drives a distance of 164 miles and charges $20 for every hour driven, how much would the ta
    13·2 answers
  • A-9=6<br> p-20=-30<br> z-(-12)=15<br> x-(-7)=10
    13·1 answer
  • QUICK HELP ITS DUE IN 10 EEEEEEEEEEE
    8·1 answer
  • Delta math help? I'm stuck please this is very urgent!!!
    9·2 answers
  • 1) Eight less than triple a number
    10·2 answers
  • Which of the following represents 2x - 5y + 15 = 0 written in slope-intercept form?
    6·1 answer
  • I need help asap thank you
    8·1 answer
  • (3^5)^2/3^-2 simplify
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!