Answer:
the intensity will be 4 times that of the earth.
Explanation:
let us assume the following:
intensity of light on earth =J
distance of earth from sun = d
intensity of light on other planet = K
distance of other planet from sun =
(from the question, the planet is half as far from the sun as earth)
from the question the intensity is inversely proportional to the square of the distance, hence
- intensity on earth : J =

J
= 1 ... equation 1
- intensity on other planet : K =
(the planet is half as far from the sun as earth)
K
= 1 ....equation 2
- equating both equation 1 and 2 we have
J
= K
J
= K
J = 
K = 4J
intensity of light on other planet (K) = 4 times intensity of light on earth (J)
Answer:
I'm not taking physics right now but I would love too.
Explanation:
As the ball is moving in air as well as we have to neglect the friction force on it
So we can say that ball is having only one force on it that is gravitational force
So the force on the ball must have to be represented by gravitational force and that must be vertically downwards
So the correct FBD will contain only one force and that force must be vertically downwards
So here correct answer must be
<em>Diagram A shows a box with a downward arrow. </em>