Answer:
2.26 s
Explanation:
The following data were obtained from the question:
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =..?
The time taken for the egg to hit the floor can be obtained as illustrated below:
h = ½gt²
25 = ½ × 9.8 × t²
25 = 4.9 × t²
Divide both side by 4.9
t² = 25 / 4.9
Take the square root of both side
t = √(25 / 4.9)
t = 2.26 s
Thus, it will take 2.26 s for the egg to hit the floor.
Answer: First you must convert pound in kilogram, and feet in meter
Explanation:
To calculate momentum we use .
p=m*V
mass-m
speed-V
distance and time are used to calculate velocity(speed)
You are given :
mass- in pounds
for distance - in feet
before you do any calculation first you have to convert pounds in kilograms
and feet in meters.
The two fields were physical quantities are used in motion calculations are length and mass with time.
The physical quantity in a field is referred as every point in a particular space time.
<h3>
How physical quantities are used in motion calculations?</h3>
If we consider an object, the physical property of the object is considered as physical quantity and to measure that object is known as units. The Physical quantity can be classified as elemental physical quantity and derived physical quantity. Length, mass, time, etc.. are elemental physical quantity, momentum, density, acceleration, etc... are derived physical quantity. Only for charge and temperature the physical quantity will be less than zero.
Length, mass and time are the physical quantities used in motion calculations.
Learn more about motion calculations,
brainly.com/question/8701763
#SPJ2
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.