Answer:
radiation is the correct answer
<span><span>Imagine we have a 2 lb ball of putty moving with a speed of 5 mph striking and sticking to a 18 lb bowling ball at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v1. To find v1, use momentum conservation: 2x5=(18+2)v1, v1=0.5 mph. </span><span>Next, imagine we have a 18 lb bowling ball moving with a speed of 5 mph striking and sticking to a 2 lb ball of putty at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v2. To find v2, use momentum conservation: 18x5=(18+2)v2, v2=4.5 mph. </span><span>
</span><span>
</span><span>now figure out your problem its really easy let me know if you need more help </span></span>
A) work = force * distance
mass is not a force, weight is, so we have to find the weight of the block.
Weight = mg
Weight = (220kg)(9.8)
Weight = 2156N
Work = 2156N * 3.10m
work = 6683.6J
b) Since he is holding the weights, it's not moving, therefore, he doesn't do any work
c) The answer is still the same amount of work when he lifted them.
d) The answer is no since when he let go the weight, he doesn't apply any force to the weight.
e) P = work/time
P = 6683.6J / 2.1s
P = 3182.67 watts
No one has been there yet