Answer:
(a) 81.54 N
(b) 570.75 J
(c) - 570.75 J
(d) 0 J, 0 J
(e) 0 J
Explanation:
mass of crate, m = 32 kg
distance, s = 7 m
coefficient of friction = 0.26
(a) As it is moving with constant velocity so the force applied is equal to the friction force.
F = 0.26 x m x g = 0.26 x 32 x 9.8 = 81.54 N
(b) The work done on the crate
W = F x s = 81.54 x 7 = 570.75 J
(c) Work done by the friction
W' = - W = - 570.75 J
(d) Work done by the normal force
W'' = m g cos 90 = 0 J
Work done by the gravity
Wg = m g cos 90 = 0 J
(e) The total work done is
Wnet = W + W' + W'' + Wg = 570.75 - 570.75 + 0 = 0 J
Answer:
12N
Explanation:
Suppose the string mass is negligible, the total mass of the 2 block system is 6 + 9 = 15 kg
So the acceleration of the system when subjected to 30N force is
a = F / M = 30 / 15 = 2 m/s2
So both blocks would have the same acceleration, however, the force acting on the 6kg block would have a magnitude of
f = am = 2 * 6 = 12N
This is the tension in the string between the blocks
Answer: 1 is phone 2 is sandwich, Last is picture.
Explanation: I hoped That Helped !!
I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>