Answer:
8) 709.8875 J
9) The object is at 7.24375 m from the ground
10) Kinetic energy increases as the object falls.
Explanation:
We use the expression for the displacement h(t) as a function of time of an object experiencing free fall:
h(t) = hi - (g/2) t^2
hi being the initial position of the object (10m) above ground, g the acceleration of gravity (9.8 m/s^2), and t the time (in our case 0.75 seconds):
h(0.75) = 10 - 4/9 (0.75)^2 = 7.24375 m
This is the position of the 10 kg object after 0.75 seconds (answer for part 9)
Knowing this position we can calculate the potential energy of the object when it is at this height, using the formula:
U = m g h = 10kg * 9.8 (m/s^2) * 7.24375 m = 709.8875 J (answer for part 8)
Part 10)
the kinetic energy of the object increases as it gets closer to ground, since its velocity is increasing in magnitude because is being accelerated in its motion downwards.
Answer:
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Explanation:
This is an angular kinematic exercise the equation for the angular position
the particle A
θ = θ₀ + ω₀ t + ½ α t²
They say for the particle B
w₀B = ½ w₀
αB = 2 α
In addition, the particle begins at a time t_1 after particle A, in order to use the same timer, we must subtract this time from the initial
t´ = t - t_1
l
et's write the equation of particle B
θ = θ₀ + w₀B t´ + ½ αB t´2
replace
θ = θ₀ + ½ w₀ (t -t_1) + ½ 2α (t -t_1)²
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Answer:
C. software
Explanation:
software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work.
Kinetic energy is energy of motion. Pick choice-A, at the top of the swing, where she stops moving & then goes the other way.