1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
11

Steam enters an adiabatic turbine at 400◦C, 2 MPa pressure. The turbine has an isentropic efficiency of 0.9. The exit pressure i

s set so that the actual work output from the turbine is 700 kJ/kg. Determine the required exit pressure and the actual exit temperature and quality, if saturated.

Engineering
1 answer:
pychu [463]3 years ago
8 0

Answer:

Explanation:

Find attached the solution

You might be interested in
Along with refining craft skills another way to increase the odds for career advancement is to
Xelga [282]

The acquisition of additional certifications with a personal refined craft skills can increase the odds for career advancemen.

<h3>What is a career advancement?</h3>

An advancement is achieved in a career if a professional use their skill sets, determination or perserverance to achieve new career height.

An example of a career advancement is when an employee progresses from entry-level position to management and transits from an occupation to another.

Therefore, the Option A is correct.

Read more about career advancement

<em>brainly.com/question/7053706</em>

7 0
2 years ago
A vertical pole consisting of a circular tube of outer diameter 127 mm and inner diameter 115 mm is loaded by a linearly varying
Anna [14]

Maximum shear stress in the pole is 0.

<u>Explanation:</u>

Given-

Outer diameter = 127 mm

Outer radius,r_{2} = 127/2 = 63.5 mm

Inner diameter = 115 mm

Inner radius, r_{1} = 115/2 = 57.5 mm

Force, q = 0

Maximum shear stress, τmax = ?

 τmax  = \frac{4q}{3\pi } (\frac{r2^2 + r2r1 + r1^2}{r2^4 - r1^4} )

If force, q is 0 then τmax is also equal to 0.

Therefore, maximum shear stress in the pole is 0.

3 0
4 years ago
Harmonic excitation of motion is represent as
Gennadij [26K]

Harmonic excitation refers to a sinusoidal external force of a certain frequency applied to a system. ... Resonance occurs when the external excitation has the same frequency as the natural frequency of the system. It leads to large displacements and can cause a system to exceed its elastic range and fail structurally.

6 0
3 years ago
A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is imp
Nikolay [14]

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

6 0
3 years ago
A walrus loses heat by conduction through its blubber at the rate of 220 W when immersed in −1.00°C water. Its internal core tem
Llana [10]

Answer:

The average thickness of the blubber is<u> 0.077 m</u>

Explanation:

Here, we want to calculate the average thickness of the Walrus blubber.

We employ a mathematical formula to calculate this;

The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L

Where dQ is the change in amount of heat transferred

dT is the temperature gradient(change in temperature) i.e T2-T1

dQ/dT = 220 W

K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)

A is the surface area which is 2.23 m^2

T2 = 37.0 °C

T1 = -1.0 °C

L is ?

We can rewrite the equation in terms of L as follows;

L × dQ/dT = KA(T2-T1)

L = KA(T2-T1) ÷ dQ/dT

Imputing the values listed above;

L = (0.2 * 2.23)(37-(-1))/220

L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m

7 0
4 years ago
Other questions:
  • Superheated steam is stored in a large tank at 6 MPa and 800°C, The steam is exhausted isentropically through a converging-diver
    5·1 answer
  • To 3 significant digits, what is the change of entropy of air in kJ/kgk if the pressure is decreased from 400 to 300 kPa and the
    15·1 answer
  • In many problems where the potential energy is considered between two objects, the potential energy is defined as zero when the
    8·1 answer
  • A closed system of mass 10 kg undergoes a process during which there is energy transfer by work from the system of 0.147 kJ per
    9·2 answers
  • What are the mechanical properties of a geotextile that are of most importance when using it as a separator in an unpaved road s
    12·1 answer
  • Describe the algorithm you use for looking up a person’s telephone number in the phone book. The input is person’s name; the out
    9·2 answers
  • With a brief description, What are the 14 principles of management by fayol.​
    10·1 answer
  • Parallel circuits???
    9·1 answer
  • For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the stiffness of the members is km = 2.
    14·1 answer
  • Good night. I need to go to bed. Byeeeeeeeeeeeee.​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!