Answer:
1.3 L
Explanation:
The volume of a rectangular cube can be calculated using the following formula:
Volume (L) = length (cm) x width (cm) x height (cm)
Keep in mind that 1 L = 1,000 cm³.
Before you can plug the values into the equation, you need to make sure they all have the same unit. Since the length is in meters (m), you need to first convert it to centimeters.
1 meter = 100 cm
0.159 m 100 cm
--------------- x ---------------- = 15.9 cm
1 m
Now, you can solve for the volume. To find the answer is the unit liters, you need to divide the volume by 1,000.
Volume = l x w x h
Volume = 15.9 cm x 10.5 cm x 7.7 cm
Volume = 1,285.5 cm³
Volume = 1.2855 L ------> Volume = 1.3 L
The energy that is
essential to break one C-H bond is 414 kJ/mol. Since, there are four C-H bonds
in CH4, the energy Δ HCH4 for
breaking all the bonds is calculated as Δ HCH4 = 4 x bond energy of C-H bond. By
multiplying the 4 with the 414 kJ/mol you can get the answer of 1656 kJ/mol CH4
molecules.
Answer: 1:4.69
Explanation:
The ratio can be expressed as:
Ua/Ub= √(Mb/Ma)
Where Ua/Ub is the ratio of velocity of hydrogen to carbon dioxide and Ma is the molecular mass of hydrogen gas= 2
Mb is the molecular mass of CO2 = 44
Therefore
Ua/Ub= √(44/2)
Ua/Ub = 4.69
Therefore the ratio of velocity of hydrogen gas to carbon dioxide = 1:4.69
which implies hydogen is about 4.69 times faster than carbon dioxide.
You should always do A. form a hypothesis before performing an experiment also the other options cannot happen until after an experiment.
Answer:-
2747.7 Cal mol -1
Explanation:-
Molar heat of Fusion is defined as the amount of heat necessary to melt (or freeze) 1 mole of a substance at its melting point.
Atomic mass of Iron = 55.845 g mol-1
Mass of Iron = 200 g
Number of moles of Iron = 200 g / (55.845 g mol-)
= 3.581 moles
Heat released = 9840 Cal
Molar heat of Fusion = Heat released / Number of moles
= 9840 Cal / 3.581 moles
= 2747.7 Cal mol -1