The density decreases and convection causes the hot air particles to rise! BRANLIEST
Answer:
Energy stored, U = 66.6 J
Explanation:
It is given that,
Number of turns in the solenoid, n = 500
Radius of solenoid, r = 1.5 cm = 0.015 m
Distance, d = 15 cm = 0.15 m
Let U is the energy stored in the solenoid. Its formula is given by :

L is the self inductance of the solenoid

N is the no of turns per unit length


L = 0.00148 Henry

U = 66.6 J
Out of given options, the correct option for the energy stored in the solenoid is 70 J. So, the correct option is (a) "70 J".
Answer:
The magnitude of each charge is 
Explanation:
Suppose the two point charges are separated by 6 cm. The attractive force between them is 20 N.
We need to calculate the magnitude of each charge
Using formula of force

Where, q = charge
r = separation
Put the value into the formula




Hence, The magnitude of each charge is 
Answer : The correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Explanation :
Conversion of degree Celsius to Kelvin :

Conversion of degree Celsius to degrees Fahrenheit :

By using these two conversion factors, we get the three temperature readings all mean the same thing.
For option A :


For option B :


For option C :


For option D :


From the given options, only option (D) is correct.
Hence, the correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Answer:
D) quadruple.
Explanation:
Assuming the same constant acceleration a in both cases, as we have as givens the acceleration a, the distance d, and the initial velocity v, we can use the following kinematic equations in order to compare the distances:
vf² - v₀² = 2*a*d
As the final state of the car is at rest, the final velocity vf, is 0.
⇒ - v₀² = 2*(-a)*d ⇒ d =v₀² / 2*a
1) initial velocity v₀
d₁ = v₀² / 2 a
2 ) initial velocity 2*v₀
⇒ d₂ = (2*v₀)² / 2*a = 4*v₀² / 2*a ⇒ d₂ = 4* (v₀² / 2*a)
⇒ d₂ = 4* d₁
As the equation shows, the distance required to stop, if the initial velocity were doubled, the distance required to stop would quadruple.