Answer:
22J
Explanation:
Given :
radius 'r'= 3cm
rotational inertia 'I'=4.5 x
kgm²
mass on one side of rope '
'= 2kg
mass on other side of rope'
' =4kg
velocity'v' of mass
' = 2m/s
Angular velocity of the pulley is given by
ω = v /r => 2/ 3x 
ω = 66.67 rad/s
For the rotating body, we have
KE =
I ω²

= 10J
Next is to calculate kinetic energy of the blocks :

=12J
Therefore, the total kinetic energy will be
KE =
=10 + 12
KE= 22J
Answer:
1.2826 x 10^-13 m
Explanation:

Here, k be the kinetic energy and m be the mass
K = 50 KeV = 50 x 1.6 x 10^-16 J = 80 x 10^-16 J
m = 1.67 x 10^-27 kg

λ = 1.2826 x 10^-13 m
<span>Since forces are vector quantities, we must indicate direction using positive and negative values. East will be assigned positive and west will be negative. Friction will act as a negative force since it impedes action. To calculate the net force we sum the vector quantities, as follows. Net force equals 50n which is derived by the following calculation: 300n-220n-30n.</span>
Answer:
2 seconds
Explanation:
v = at + v₀
19.62 m/s = (9.81 m/s²) t + 0 m/s
t = 2 s