1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
2 years ago
6

Masses are stacked on top of the block until the top of the block is level with the waterline. This requires 20 g of mass. What

is the mass of the wooden block
Physics
1 answer:
Kobotan [32]2 years ago
6 0

Answer:

Mass of the wooden Block is 20g.

Explanation:

The buoyant force equation will be used here

Buoyant Force= ρ*g*1/2V Here density used is of water

m*g= ρ*g*1/2V

Simplifying the above equation

2m= ρ*V Eq-1

Also we know from the question that

ρ*V = m + 0.020 Eq-2 ( Density = (Mass+20g)/Volume )

Equating Eq-1 & Eq-2 we get

2m = m+0.020

m = 0.020kg

m = 20g

You might be interested in
In the diagram, q1 = -6.39*10^-9 C and q2 = +3.22*10^-9 C. What is the electric field at point P? pls help
Alexxx [7]

Answer:

Below

Explanation:

First draw the vectors that represent both electric fields.

E1 is the elictric field created by q1, E2 is the one created by q2.

● q1 is negative so E1 will point from P.

● q2 is positive so E2 will point out of P

(Picture below)

■■■■■■■■■■■■■■■■■■■■■■■■■■

The resulting electric field is equal to the sum of the two fields since both vectors are colinear.

Let E be the total field.

● E = E1 + E2

The formula of the electric field intensity is:

● E = K ×(q/d^2)

-K is Coulomb's constant

-d is the distance between the charge and the object ( here P)

-q is the charge

■■■■■■■■■■■■■■■■■■■■■■■■■■

● E1 = K × (q1/d1^2)

The distance between q1 and P is the qum of 0.15 m 0.25 m. (0.4 m)

Coulombs constant is 9×10^9 m^2/C^2

● E1 = 9×10^9 ×[-6.39 × 10^(-9)/ 0.4^2]

● E1 = -359.43 N/C

■■■■■■■■■■■■■■■■■■■■■■■■■■

● E2 = K ×(q2/d^2)

The distance between q2 and P is 0.25 m.

● E2 = 9×10^9×[3.22×10^(-9) /0.25^2]

● E2 = 463.68 N/C

■■■■■■■■■■■■■■■■■■■■■■■■■■

● E = E1 + E2

● E = -359.43+463.68

● E = 105.25 N/C

4 0
3 years ago
Read 2 more answers
Solve the problem.
gulaghasi [49]
As the shock waves travel in concentric outward circles from the epicenter, and the diameter is measured 120 miles,
area of a circle =<span>π</span><span>r*r</span>

d=120
<span>r=<span>120/2</span></span><span>r=60</span><span><span>60*60</span>=3600</span><span>3600*π=11309.734</span>
<span>11309.734 square miles</span>
5 0
3 years ago
Skin is the main barrier between internal organs and the outside environment. The outer layer of skin is composed mostly of epit
vagabundo [1.1K]
The characteristic of epithelial cells that makes them ideal for providing this type of protection is that the cells are packed tightly together. 
Skin, the body's largest organ,is our first and best defense against external aggressors. The many layers work hard to protect us, however when its condition is compromised, its ability to work as an effective barrier is impaired. 
3 0
2 years ago
Read 2 more answers
If the length of a ramp (an inclined plane) is 12 ft, and it rises 2 ft, what is its MA?
dangina [55]
The MA is 6! Hope This Helps!
3 0
3 years ago
The force exerted by the wind on the sails of a sailboat is Fsail = 330 N north. The water exerts a force of Fkeel = 210 N east.
Elena L [17]

Answer:

The magnitude of the acceleration is a_r = 1.50 \ m/s^2

The direction is  \theta =  32.5 6^o north of  east

Explanation:

From the question we are told that

   The force exerted by the wind is  F_{sail} =  (330 ) \ N \ north

   The force exerted by water is  F_{keel} =  (210  ) \ N \ east

      The mass of the boat(+ crew) is  m_b  =  260  \ kg

Now Force is mathematically represented as

      F =  ma

Now the acceleration towards the north is mathematically represented as

      a_n  =  \frac{F_{sail}}{m_b}

substituting values

       a_n  =  \frac{330 }{260}

      a_n  =  1.269 \ m/s^2

Now the acceleration towards the east is mathematically represented as

       a_e = \frac{F_{keel}}{m_b }

substituting values

      a_e = \frac{210}{260}

      a_e =0.808 \ m/s^2

The resultant acceleration is  

      a_r =  \sqrt{a_e^2 + a_n^2}

substituting values

     a_r =  \sqrt{(0.808)^2 + (1.269)^2}

      a_r = 1.50 \ m/s^2

The direction with reference from the north is evaluated as

Apply SOHCAHTOA

        tan \theta =  \frac{a_e}{a_n}

       \theta = tan ^{-1} [\frac{a_e}{a_n } ]

substituting values

     \theta = tan ^{-1} [\frac{0.808}{1.269 } ]

    \theta = tan ^{-1} [0.636 ]

   \theta =  32.5 6^o

     

   

       

5 0
3 years ago
Other questions:
  • A person jumps from the roof of a house 3.1-m high. When he strikes the ground below, he bends his knees so that his torso decel
    15·1 answer
  • 420 hg = _____ cg help please
    12·2 answers
  • Which group of components is common to the circulatory systems of most living animals? A. arteries, veins, capillaries B. vessel
    14·1 answer
  • A bungee jumper falls 97.2 feet before bouncing back up at the end of his bungee cord. Then he falls 64.8 feet before bouncing u
    9·1 answer
  • Physicists often measure the momentum of subatomic particles moving near the speed of light in units of MeV/c, where c is the sp
    12·1 answer
  • GIVING THE BRAINEST AND 15 POINTS
    8·1 answer
  • Which circuit shows three resistors connected in series?​
    11·2 answers
  • What is the acceleration of a 10 kg block that experiences a 50 N applied force as it slides across a
    12·1 answer
  • This ray diagram shows the image formed when a candle is placed in front of
    15·1 answer
  • A process generates 250 watts of useful energy and 600 watts of waste energy. WhT is the efficiency of the process?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!