Answer:
T=1.384×10⁶seconds
Explanation:
Given data
p (Intensity)=1.30 kw/m²
E (Energy)=1.8×10⁹ J
A (Area)=1.00 m²
T (Time required)=?
Solution
E=PT ................eq(i)
where E is energy
P is radiation power
T is time
Radiating Power is given as
P=pA
Where p is intensity
A is Area
Put P=pA in eq(i) we get
E=pAT
T=E/pA

Answer:
100 Joule
Explanation:
Amount of heat in agiven body is given by Q = m•C•ΔT
where m is the mass of the body
c is the specific heat capacity of body. It is the amount of heat stored in 1 unit weight of body which raises raises the temperature of body by 1 unit of temperature.
ΔT is the change in the temperature of body
___________________________________________
coming back to problem
m = 5g
C = 2J/gC
since, it is given that temperature of body increases by 10 degrees, thus
ΔT = 10 degrees
Using the formula for heat as given
Q = m•C•ΔT
Q = 5* 2 * 10 Joule= 100 Joule
Thus, 100 joule heat must be added to a 5g substance with a specific heat of 2 J/gC to raise its temperature go up by 10 degrees.
Answer:
Three types of electromagnetic waves, used to transmit various information
Explanation:
A form of energy waves having both electric & magnetic fields are Electromagnetic waves. Three types -
Radio Waves - These have longest wavelengths & transmit data through radio, satellites, radar .
Micro Waves - These have shorter wavelengths & are used in cooking appliances & predicting weather.
X rays - These have more short wavelength and can penerate soft tissues like skin & muscle, hence are used for medical examining
Answer:
Currently in the united states using parallel system
Explanation:
because you can walk with the twomodes with internal combustion engine or running on electric power.
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.