Answer:
Thank you for this!
Explanation:
I was about to click it on a question I saw.
Answer:
The surface temperature increases when two bodies are rubbed against each other due to friction.
Explanation:
No object has a perfectly even surface. So, when two bodies with uneven surfaces are rubbed against each other, they experience friction.
Friction is a resistance experienced by the two bodies when they are moved against each other.
The friction between the two surfaces, converts the kinetic energy of the movement to the thermal energy.
Thus, resulting in rise in the surface temperature of the two bodies.
Therefore, when two bodies are rubbed against each other, the surface temperature increases due to friction.
Answer:
Welcome to Gboard clipboard, any text that you copy will be saved here.
Explanation:
Touch and hold a clip to pin it. Unpinned clips will be deleted after 1 hour.
Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV