Answer: a. 17.7 KJ/Mol
b. T=210K
Explanation:
Arsine, ash3 is a highly toxic compound used in the electronics industry for the production of semiconductors. its vapor pressure is 35 torr at – 111.95°c and 253 torr at – 83.6°c. using these data calculate.
the question isnt completely originally, but we could look at the likely derivation from the questions
(a) the standard enthalpy of vaporization
using the clausius clapeyron equation
In (PT1vap / PT2vap) = delta H (vap) / R ( (1/T1) - (1/T2) )
In (35Torr/253Torr) = delta H (vap) / 8.3145 ( (1/189.55) - (1/161.2) )
Therefore, Delta H (vap) = 17.7 KJ/Mol
b. Also the boiling point
What is the normal boiling point of arsine?
At the boiling point Pvap = atmospheric pressure = 1 atm=760 torr
substitution into the equation as stated in question 1
ln(760/253)=17700/8.314(1/189.55-1/T)
T=210K
Answer:
Radius r = 20.34 cm
The radius that can produces such a disk is 20.34 cm
Explanation:
Area of a circle;
A = πr^2
A = area
r = radius
Making r the subject of formula;
r = √(A/π) ........1
Given;
A = 1300 cm^2
Substituting into the equation 1;
r = √(1300/π)
r = 20.34214472564 cm
r = 20.34 cm
The radius that can produces such a disk is 20.34 cm
Ik what it is hit me up for it
The answer is Photosphere. The photosphere is the lowest layer<span> of the </span>solar<span> atmosphere. It is essentially the </span>solar<span> "surface" that </span>we see<span> when </span>we look<span> at the </span>Sun in "white" light. It is <span>like a glowing fog, so at a distance, it </span>looks<span> solid, the same way a cloud looks solid from a distance.</span>
Hi there!
(a)
Recall that:

W = Work (J)
F = Force (N)
d = Displacement (m)
Since this is a dot product, we only use the component of force that is IN the direction of the displacement. We can use the horizontal component of the given force to solve for the work.

To the nearest multiple of ten:

(b)
The object is not being displaced vertically. Since the displacement (horizontal) is perpendicular to the force of gravity (vertical), cos(90°) = 0, and there is NO work done by gravity.
Thus:

(c)
Similarly, the normal force is perpendicular to the displacement, so:

(d)
Recall that the force of kinetic friction is given by:

Since the force of friction resists the applied force (assigned the positive direction), the work due to friction is NEGATIVE because energy is being LOST. Thus:

In multiples of ten:

(e)
Simply add up the above values of work to find the net work.

Nearest multiple of ten:

(f)
Similarly, we can use a summation of forces in the HORIZONTAL direction. (cosine of the applied force)



Nearest multiple of ten:
