Answer:
B. 10 mL of Cabr2(aq) at 35 degrees celsius
Explanation:
The colder something is the more the atoms are compressed together; atoms can't move as much. 35 degrees is the warmest option, so it makes the most sense.
Answer:
0.75 g/cm³
Explanation:
Given data:
Mass of wooden block = 180 g
Length of block = 10 cm
Width of block = 6 cm
Height or thickness = 4 cm
Density of block = ?
Solution:
Volume of block = height × length × width
Volume of block = 4 cm × 10 cm× 6 cm
Volume of block = 240 cm³
Density of block:
density = mass/ volume
d = 180 g/ 240 cm³
d = 0.75 g/cm³
<h3>
Answer: 144 g</h3>
Explanation:
Mass of glucose = moles × molar mass
∴ Mass of glucose = 0.8 mol × 180 g mol⁻¹
= 144 g
∴ the mass of glucose you need to have 0.8 mol of glucose = 144 g
Answer:
sample B contains the larger density
Explanation:
Given;
volume of sample A, V = 300 mL = 0.3 L
Molarity of sample A, C = 1 M
volume of sample B, V = 145 mL = 0.145 L
Molarity of sample B, C = 1.5 M
molecular mass of sodium chloride, Nacl = 23 + 35.5 = 58.5 g/mol
Molarity is given as;

The reacting mass for sample A = 0.3mol x 58.5 g/mol = 17.55 g
The reacting mass for sample B = 0.2175 mol x 58.5 g/mol = 12.72 g
The density of sample A 
The density of sample B 
Therefore, sample B contains the larger density
Answer:
A) 4.3 × 10²⁴ atoms
Explanation:
Step 1: Given data
Moles of neon: 7.2 moles
Step 2: Calculate the number of atoms present in 7.2 moles of neon
In order to convert moles to toms, we need a conversion factor. In this case, we will use Avogadro's number: there are 6.02 × 10²³ neon atoms in 1 mole of neon atoms.
7.2 mol × 6.02 × 10²³ atoms/mol = 4.3 × 10²⁴ atoms